T1

星际旅行

考试时觉得是道数学题,但没想到忘了欧拉路。

首先将每条边都拆成两条边,那么题目就变成了任意删掉两条边,使得新的图中存在欧拉路。设 \(sum\) 表示自环的数量, \(du_{i}\) 表示不算自环,点 \(i\) 的度数,考虑以下几种情况,

  • 删任意两个自环,则对答案的贡献为 \(\frac{sum\times\left(sum-1\right)}{2}\)

  • 删一个自环和任意一条边,则对答案的贡献为 \(sum\times(m-sum)\)

  • 删两条有公共顶点的边,因为删完边后,图中点的度数都为偶数,所以删的边肯定是要有一个公共顶点的,则对答案的贡献为 \(\sum_{i=1}^{n}\frac{du_{i}\times\left(du_{i}-1\right)}{2}\)

注意判断图是否连通。

Code
#include<cstdio>
#define MAX 100001
#define re register
#define int long long
namespace OMA
{
int n,m;
struct Graph
{
int next;
int to;
}edge[MAX<<1];
int cnt=1,head[MAX];
int ans,sum,du[MAX];
int vis[MAX],link[MAX];
inline int read()
{
int s=0,w=1; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
inline void add(int u,int v)
{
edge[++cnt].next = head[u];
edge[cnt].to = v;
head[u] = cnt;
}
inline void dfs(int u)
{
vis[u] = 1;
for(re int i=head[u]; i; i=edge[i].next)
{
int v = edge[i].to;
if(!vis[v])
{ dfs(v); }
}
}
signed main()
{
n = read(),m = read();
for(re int i=1; i<=m; i++)
{
int u = read(),v = read();
if(u==v)
{ link[u] = 1,sum++; }
else
{
add(u,v),add(v,u);
du[u]++,du[v]++;
}
}
for(re int i=1; i<=n; i++)
{
if(link[i]||du[i])
{ dfs(i); break; }
}
for(re int i=1; i<=n; i++)
{
if(!vis[i]&&(link[i]||du[i]))
{ printf("0\n"); return 0; }
}
ans = sum*(m-sum)+sum*(sum-1)/2;
for(re int i=1; i<=n; i++)
{ ans += du[i]*(du[i]-1)/2; }
printf("%lld\n",ans);
return 0;
}
}
signed main()
{ return OMA::main(); }

T2

考试时想的是二分,但二分并不正确,因为并不满足单调性好像是屁话。

首先我们能得出一个式子,

\[\sum_{i=1}^{n}\left(\left\lceil\frac{a_{i}}{d}\right\rceil\times d-a_{i}\right) \le k
\]

移项可得,

\[\sum_{i=1}^{n}\left\lceil\frac{a_{i}}{d}\right\rceil\le \frac{k+\sum_{i=1}^{n}a_{i}}{d}
\]

设右侧的一大堆为 \(temp\) ,然后我们枚举 \(d\) ,用分块的思想,显然,对于每一个 \(temp\) 相等的区间中,右端点是最优的,然后判断是否合法,然后转移答案。

Code
#include<cmath>
#include<cstdio>
#include<algorithm>
#define MAX 101
#define re register
#define int long long
namespace OMA
{
int a[MAX];
int n,k,ans;
inline int read()
{
int s=0,w=1; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
signed main()
{
n = read(),k = read();
for(re int i=1; i<=n; i++)
{ k += a[i] = read(); }
for(re int l=1,r; l<=k; l=r+1)
{
r = k/(k/l);
int temp = 0;
for(re int i=1; i<=n; i++)
{ temp += (int)ceil((double)a[i]/r); }
if(temp<=k/r)
{ ans = r; }
}
printf("%lld\n",ans);
return 0;
}
}
signed main()
{ return OMA::main(); }

T3

一开始以为是个数学题,开始打表找规律,无果,想了想,觉得是个 \(dp\) 然而我状态转移方程啥也推不出来。输出0骗了5pts

正解是个 \(dp\) ,设 \(dp_{i,j}\) 表示是 \(i\)-超级树,有 \(j\) 条点不重复的路径的方案数。

考虑\(dp_{i}\) 对 \(dp_{i+1}\) 的贡献,枚举左子树的路径数 \(l\) ,右子树的路径数 \(r\) ,设 \(temp=dp_{i,l}\times dp_{i,r}\) ,有以下几种情况,

  • 啥也不干, \(dp\left(i+1,l+r\right)+=temp\)
  • 根自己作为一条新路径, \(dp\left(i+1,l+r+1\right)+=temp\)
  • 根连接到左子树或右子树的一条路径上, \(dp\left(i+1,l+r\right)+=2\times temp\times \left(l+r\right)\)
  • 根连接左子树和右子树的一条路径, \(dp\left(i+1,l+r-1\right)+=2\times temp\times l\times r\)
  • 根连接左子树或右子树的两条路径, \(dp\left(i+1,l+r-1\right)+=temp\times\left(l\times\left(l-1\right)+r\times\left(r-1\right)\right)\)

然后直接转移即可。

Code
#include<cstdio>
#define MAX 301
#define re register
#define int long long
namespace OMA
{
int k,mod;
int dp[MAX][MAX];
signed main()
{
scanf("%lld%lld",&k,&mod);
dp[1][0] = dp[1][1] = 1;
for(re int i=0; i<=k-1; i++)
{
for(re int l=0; l<=k; l++)
{
for(re int r=0; r<=k; r++)
{
int temp = dp[i][l]*dp[i][r]%mod;
if(l+r<=k)
{
dp[i+1][l+r] += temp;
dp[i+1][l+r] += 2*temp*(l+r);
dp[i+1][l+r] %= mod;
}
if(l+r+1<=k)
{ (dp[i+1][l+r+1] += temp) %= mod; }
if(l+r-1<=k)
{
dp[i+1][l+r-1] += 2*temp*l*r;
dp[i+1][l+r-1] += temp*((l*(l-1))+r*(r-1));
dp[i+1][l+r-1] %= mod;
}
}
}
}
printf("%lld\n",dp[k][1]%mod);
return 0;
}
}
signed main()
{ return OMA::main(); }

T4

求和

本次考试最水的一道题,然而 \(LCA\) 打错了,直接爆0。

直接找询问的两个点的 \(LCA\) 然后从 \(LCA\) 开始分别向两个点枚举深度,并统计答案,记得最后再容斥一下,因为 \(LCA\) 的深度算了两遍。

然后这样过不掉luogu的加强数据,只需预处理一下前缀和即可。

以下为朴素算法

Code
#include<cstdio>
#define MAX 300001
#define re register
#define int long long
namespace OMA
{
int n,m;
struct Graph
{
int next;
int to;
}edge[MAX<<1];
int bin[MAX];
int cnt=1,head[MAX];
int anc[MAX][50],dep[MAX];
const int p = 998244353;
inline int read()
{
int s=0,w=1; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
inline void add(int u,int v)
{
edge[++cnt].next = head[u];
edge[cnt].to = v;
head[u] = cnt;
}
void dfs(int u,int fa)
{
dep[u] = dep[anc[u][0] = fa]+1;
for(re int i=1; i<=bin[dep[u]]; i++)
{ anc[u][i] = anc[anc[u][i-1]][i-1]; }
for(re int i=head[u]; i; i=edge[i].next)
{
int v = edge[i].to;
if(v!=fa)
{ dfs(v,u); }
}
}
inline void swap(int &a,int &b)
{ int t=a; a=b; b=t; }
inline int LCA(int a,int b)
{
if(dep[a]<dep[b])
{ swap(a,b); }
while(dep[a]>dep[b])
{ a = anc[a][bin[dep[a]-dep[b]]]; }
if(a==b)
{ return a; }
for(re int i=bin[dep[a]]; ~i; i--)
{
if(anc[a][i]!=anc[b][i])
{ a = anc[a][i],b = anc[b][i]; }
}
return anc[a][0];
}
inline int quickpow(int a,int b)
{
int ans = 1;
while(b)
{
if(b&1)
{ ans = ans*a%p; }
a = a*a%p;
b >>= 1;
}
return ans;
}
signed main()
{
n = read();
for(re int i=2; i<=n; i++)
{
int u = read(),v = read();
add(u,v),add(v,u);
bin[i] = bin[i>>1]+1;
}
dfs(1,0);
m = read();
for(re int i=1; i<=m; i++)
{
int a = read(),b = read(),k = read();
int lca = LCA(a,b),ans = 0;
for(re int j=dep[lca]; j<=dep[a]; j++)
{ ans = (ans+quickpow(j-1,k))%p; }
for(re int j=dep[lca]; j<=dep[b]; j++)
{ ans = (ans+quickpow(j-1,k))%p; }
ans = (ans-quickpow(dep[lca]-1,k))%p;
printf("%lld\n",(ans%p+p)%p);
}
return 0;
}
}
signed main()
{ return OMA::main(); }

noip8的更多相关文章

  1. [考试总结]noip8

    又是一个题的正解都没有打出来的一天 但是自己独创了 \(lca\) 的求法, 然而如果去掉求 \(lca\) 的过程,就不会 \(TLE\) 了. \(\huge{\text{囧}}\) 然后就是对性 ...

随机推荐

  1. Spring学习总结(一)---谈谈对Spring IOC的理解(一:理论知识理解)

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  2. Anaconda软件安装使用问题

    目录 更新源 用conda安装包出现的环境不一致问题 更新源 命令行 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/ ...

  3. Pytorch的模型加速方法:Dataparallel (DP) 和 DataparallelDistributedparallel (DDP)

    Dataparallel 和 DataparallelDistributed 的区别 一.Dataparallel(DP) 1.1 Dartaparallel 的使用方式 Dataparallel 的 ...

  4. Selenium启动Firefox示例(python版)

    目前做selenium自动化使用的主流语言分为java和python,前一篇为java版,本篇介绍python实现selenium启动Firefox. 1 #-*- coding:utf-8 -*- ...

  5. postman使用笔记

    postman主要是用来做接口测试的工具,用来模拟客户端向服务器发起请求. 一.postman支持的请求类型 1.get请求 get请求是用来向服务器获取数据 get请求没有请求体,只有url和请求头 ...

  6. c语言:scanf(" %c",&bla); scanf("%c",&bla); 语句差别

    %前有空格,%没有空格 scanf("%c",&c) 与 scanf(" %c",&c),后者只是在%前多了个空格,似乎没有什么区别,但使用起来 ...

  7. C控制台程序 GUI程序

    控制台程序对应的工程类型为"Win32控制台程序(Win32 Console Application)",GUI 程序对应的工程类型为"Win32程序(Win32 App ...

  8. 常见数据库SELECT结果只显示前几条记录方法汇总

    常见数据库SELECT结果只显示前几条记录方法汇总 为了查看数据表中的数据情况.经常会遇到想让查询结果只显示N行,比如只显示10行的情况.不同的数据库有不同的关键字和SELECT实现语法. 1.SQL ...

  9. Ubuntu18.04 安装opensips,实现局域网内sip语音视频通话

    Ubuntu18.04直接安装opensips 本人实践亲测有效,用docker安装opensips尝试多次均无法连接mysql数据库,故舍弃,直接在主机上安装opensips 部分内容参考自:htt ...

  10. 跟我一起学Go系列:gRPC 全局数据传输和超时处理

    gRPC 在多个 GoRoutine 之间传递数据使用的是 Go SDK 提供的 Context 包.关于 Context 的使用可以看我之前的一篇文章:Context 使用. 但是 Context ...