EyeQ进展The Evolution of EyeQ

Mobileye’s proven leadership in ADAS technologies is based in our EyeQ family system-on-chip (SoC) devices. More than 27 car manufacturers have chosen the EyeQ for their assisted-driving technologies based on its ability to support complex and computationally intense vision processing, while maintaining low power consumption.

Mobileye’s latest fifth-generation EyeQ is able to support fully-autonomous (Level 5) vehicles.

Mobileye在在ADAS技术成熟的领导地位是基于EyeQ  系列系统级芯片(SoC)器件。超过27家汽车制造商选择了EyeQ作为辅助驾驶技术的基础,具有支持复杂且计算强度大的视觉处理能力,同时又保持了低功耗。

Mobileye的最新第五代EyeQ能够支持全自动(Level 5)车辆。

Mobileye has been able to achieve the power-performance-cost targets by employing proprietary computation cores (known as accelerators), which are optimized for a wide variety of computer-vision, signal-processing, and machine-learning tasks, including deep neural networks. These accelerator cores have been designed specifically to address the needs of the ADAS and autonomous-driving markets. Each EyeQ chip features heterogeneous, fully programmable accelerators; with each accelerator type optimized for its own family of algorithms. This diversity of accelerator architectures enables applications to save both computation time and chip power by using the most suitable core for every task. Optimizing the assignment of tasks to cores thus ensures that the EyeQ provides “super-computer” capabilities within a low-power envelope to enable price-efficient passive cooling.

通过使用专有的计算核心(称为加速器),Mobileye能够实现功率性能成本的目标,这些核心针对各种计算机视觉,信号处理和机器学习任务(包括深度神经网络)进行了优化。这些加速器内核是专门为满足ADAS和自动驾驶市场的需求而设计的。每个EyeQ芯片均具有异构的,完全可编程的加速器。每种加速器类型都针对算法系列进行了优化。加速器体系结构的多样性,使应用程序可以通过对每个任务使用最合适的内核来节省计算时间和芯片功耗。

The fully programmable accelerator cores are as follows:

  • The Vector Microcode Processors (VMP), which debuted in the EyeQ2, are now in their 4th generation of implementation in the EyeQ5, and are designed in most advanced VLSI process technology nodes – down to 7nm FinFET in the 5th generation. The VMP, a VLIW SIMD processor with cheap and flexible memory access, provides hardware support for operations common to computer vision applications and is well-suited to multi-core scenarios. Its computational power targets 24 trillion operations per second, while drawing only 10 watts in a typical application.
  • The Multithreaded Processing Cluster (MPC) was introduced in the EyeQ4 and now reaches its 2nd generation of implementation in the EyeQ5. The MPC is more versatile than any GPU and more efficient than any CPU.
  • The Programmable Macro Array (PMA) was introduced in the EyeQ4 and now reaches its 2nd generation of implementation in the EyeQ5. The PMA enables computation density nearing that of fixed-function hardware accelerators without sacrificing programmability.

In addition to Mobileye’s innovative and well-proven computer vision accelerators, the EyeQ features generic multithread CPU cores to provide the complete and robust computing platform that ADAS/AV applications demand.

完全可编程的加速器内核如下:

  • 在EyeQ2中首次亮相的矢量微码处理器(VMP),已经在EyeQ5中实现了其第四代实现,并在最先进的VLSI处理技术节点中进行了设计-第五代中的最小7nm FinFET。VMP是一种VLIW SIMD处理器,具有廉价,灵活的内存访问功能,为计算机视觉应用程序常见的操作提供硬件支持,非常适合于多核方案。计算能力目标为每秒24万亿次操作,而在典型应用中仅消耗10瓦。
  • EyeQ4中引入了多线程处理集群(MPC),现在在EyeQ5中实现了其第二代实现。MPC比任何GPU都更通用,比任何CPU都更高效。
  • 可编程宏阵列(PMA)是在EyeQ4中引入的,现已在EyeQ5中达到其第二代实现。PMA使计算密度接近固定功能硬件加速器的计算密度,而不会牺牲可编程性。

除了Mobileye的创新和久经考验的计算机视觉加速器外,EyeQ还具有通用的多线程CPU内核,可提供ADAS / AV应用程序所需的完整而强大的计算平台。

Mobileye has a long-standing cooperation with STMicroelectronics (STM) for implementation of the EyeQ devices  Leveraging its substantial experience in automotive-grade designs, STM provides support in state-of-the-art physical implementation, as well as automotive-grade memories, high-speed interfaces, and system-in-package design to ensure that the EyeQ devices meet the full qualification process according to the highest automotive standards.

Mobileye has a proven track record of developing hardware to meet the challenges of each new level of autonomous driving and we expect our computing capabilities to continue to grow exponentially. Indeed, in order to support running increasingly greater numbers of different algorithms simultaneously, each generation of the EyeQ has been approximately eight times more powerful than its predecessor, all the while maintaining the requisite low power dissipation.

ADAS and especially high levels of autonomous driving require an unprecedented level of focus on functional safety. EyeQ devices are developed to be designed into systems that require the highest grade of safety in automotive applications (i.e., ASIL D, according to the ISO 26262 standard).

In addition to the safety requirements inherent to an automotive application, security is no less a concern. To support the cyber-security requirements of ADAS/AV applications, the EyeQ5 was designed with an integrated hardware security module which includes various innovative HW security features. This enables system integrators to support secure over-the-air software updates, secure in-vehicle communication, etc.

Mobileye与意法半导体(STM)在实施EyeQ器件方面有着长期合作关系,凭借其在汽车级设计方面的丰富经验,STM为最新的物理实现以及汽车级存储器提供了支持,高速接口和系统级封装设计,以确保EyeQ设备符合最高汽车标准的完整认证流程。

Mobileye在开发硬件以应对自动驾驶每个新水平的挑战方面有着良好的记录,希望计算能力将继续呈指数增长。为了支持同时运行越来越多的不同算法,每一代EyeQ的性能都比其前代产品高出大约八倍,同时始终保持必需的低功耗。

ADAS,尤其是高水平的自动驾驶,要求对功能安全的关注达到前所未有的水平。EyeQ设备被开发用于在汽车应用中要求最高安全等级的系统(即,根据ISO 26262标准的ASIL D)。

EyeQ devices are delivered to automakers and Tier1 suppliers along with a full suite of hardware accelerated algorithms and applications that are required for ADAS and autonomous driving. Along with this,  Mobileye supports an automotive-grade standard operating system and provides a complete software development kit (SDK) to allow customers to differentiate their solutions by deploying their algorithms on EyeQ5. The SDK may also be used for prototyping and deployment of neural networks, and for access to Mobileye pre-trained network layers. Uses of EyeQ5 as an open software platform are facilitated by such architectural elements such as hardware virtualization and full cache coherency between CPUs and accelerators.

Autonomous driving requires fusion processing of dozens of sensors, including high-resolution cameras, radars, and LiDARs. The sensor-fusion process has to simultaneously grab and process all the sensors’ data. For this purpose, EyeQ5 dedicated IOs support at least 40Gbps data bandwidth. More sensors may be supported via PCIe and Gigabit Ethernet ports with 18Gbps additional data bandwidth.

EyeQ5 implements two PCIe Gen4 ports for inter-processor communication, which could enable system expansion with multiple EyeQ5 devices or for connectivity with an application processor. EyeQ devices implement high performance network on chip interconnect and multi-channel low power DDR interfaces, to support high computational and data bandwidth requirements.

除了汽车应用固有的安全要求外,安全性同样是关注的重点。为了满足ADAS / AV应用程序的网络安全要求,EyeQ5设计带有集成的硬件安全模块,该模块包括各种创新的硬件安全功能。使系统集成商能够支持安全的空中软件更新,安全的车载通信等。

EyeQ设备连同ADAS和自动驾驶所需的全套硬件加速算法和应用程序,一起提供给汽车制造商和Tier1供应商。除此之外,Mobileye支持汽车级标准操作系统,提供完整的软件开发套件(SDK),允许客户通过在EyeQ5上部署算法来区分其解决方案。该SDK还可以用于神经网络的原型设计和部署,以及用于访问Mobileye预先训练的网络层。诸如硬件虚拟化以及CPU和加速器之间的完全缓存一致性之类的体系结构元素,促进了EyeQ5作为开放软件平台的使用。

自动驾驶需要融合数十个传感器的融合处理,包括高分辨率摄像头,雷达和LiDAR。传感器融合过程必须同时获取和处理所有传感器的数据。EyeQ5专用IO至少支持40Gbps数据带宽。通过具有18Gbps附加数据带宽的PCIe和千兆以太网端口,可以支持更多传感器。

EyeQ5实现了两个PCIe Gen4端口,进行处理器间通信,可以通过多个EyeQ5设备扩展系统或与应用处理器进行连接。EyeQ设备实现了高性能的片上网络互连和多通道低功耗DDR接口,支持较高的计算和数据带宽要求。

EyeQ进展The Evolution of EyeQ的更多相关文章

  1. 差分进化算法 DE-Differential Evolution

    差分进化算法 (Differential Evolution)   Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...

  2. NB-IoT的相关资料整理(基本概念,技术优势,典型案例和当前的进展)

            人与人之间的通讯规模已近天花板,物与物的则刚刚进入增长快车道.随着可穿戴.车联网.智能抄表等新兴市场的开启,工业4.0.智慧城市.智慧农业等理念照进现实,万物互联的时代正加速到来. 一 ...

  3. Evolution项目(1)

    Evolution项目是基于NFine修改的项目 主要改动为: 支持了.net core 1.0 支持了 EF core 1.0 支持数据库自动创建及Demo数据自动灌入 修改了授权方式 新增加了一个 ...

  4. [译]2016年深度学习的主要进展(译自:The Major Advancements in Deep Learning in 2016)

    译自:The Major Advancements in Deep Learning in 2016 建议阅读时间:10分钟 https://tryolabs.com/blog/2016/12/06/ ...

  5. ubuntu 14.04 下evolution邮箱客户端设置(腾讯企业邮箱)

    安装 evolution 有PPA可用,支持 Ubuntu 14.04 及衍生系统.打开终端,输入以下命令: sudo add-apt-repository ppa:fta/gnome3 sudo a ...

  6. paper 97:异质人脸识别进展的资讯

    高新波教授团队异质人脸图像识别研究取得新突破,有望大大降低刑侦过程人力耗费并提高办案效率         近日,西安电子科技大学高新波教授带领的研究团队,在异质人脸图像识别研究领域取得重要进展,其对香 ...

  7. ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

    ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...

  8. paper 91:边缘检测近期最新进展的讨论

    VALSE QQ群对边缘检测近期最新进展的讨论,内容整理如下: 1)推荐一篇deep learning的文章,该文章大幅度提高了edge detection的精度,在bsds上,将edge detec ...

  9. paper 90:人脸检测研究2015最新进展

    搜集整理了2004~2015性能最好的人脸检测的部分资料,欢迎交流和补充相关资料. 1:人脸检测性能 1.1 人脸检测测评 目前有两个比较大的人脸测评网站: 1:Face Detection Data ...

随机推荐

  1. 02- APP需求分析与APP测试流程

    在展开一轮测试的时候,我们要遵循一个规范的流程. APP测试流程: 项目立项:简单介绍项目内容是什么? 需求评审:开发,测试,和产品. 分析需求:编写测试用例 测试用例评审:一般测试团队参加,测试点是 ...

  2. 软件篇-02-基于ZED 2和ORB_SLAM2的SLAM实践

    时隔两周,我又回来了. ​ 本期内容如题,ZED 2的SDK功能还是挺多的,包括轨迹跟踪,实时建图等等.虽然由于是商业产品,我看不到他们的源代码,但是根据使用情况来看,ZED 2内部是采用了IMU和光 ...

  3. PAT 乙级 -- 1013 -- 数素数

    题目简介 令Pi表示第i个素数.现任给两个正整数M <= N <= 104,请输出PM到PN的所有素数. 输入格式: 输入在一行中给出M和N,其间以空格分隔. 输出格式: 输出从PM到PN ...

  4. hdu5033 最大仰望角

    题意:       给你n个楼房排成一条直线,楼房可以看成是宽度为1的线段,然后给你m组询问,每组询问给你一个坐标,输出在当前坐标仰望天空的可视角度. 思路:       n比较大,O(n*m)肯定跪 ...

  5. UVA10125和集

    题意:       给你一个集合,让你从里面找到4个元素,使得a+b+c=d,并且找到最大的d. 思路:       我们可以吧问题拆开,使得a+b=d-c,这样就能O(n^2)枚举a+b记录出现的和 ...

  6. Packing data with Python

    Defining how a sequence of bytes sits in a memory buffer or on disk can be challenging from time to ...

  7. docker-compose如何动态配置springboot项目的application.yml的配置

    假如我们再springboot的工程中有配置文件 方式1: application.properties里面存在环境变量: #配置数据库链接 spring.datasource.url = jdbc: ...

  8. FastDFS依赖无法导入

    FastDFS依赖无法导入 fastdfs-client-java 导入爆红 <!-- FastDFS--> <dependency> <groupId>org.c ...

  9. Nacos服务发现

    基础配置初始化 NacosDiscoveryClientConfiguration NacosDiscoveryProperties 初始化Nacos基础配置信息的bean,主要指yaml中配置Nac ...

  10. zimbra安装三方颁发的证书

    步骤1:取得SSL凭证 证书需要取的从根证书每一级的证书 步骤2:合成SSL证书 将中级.根证书合成为一个证书 顺序:按照从后到前合成为一个证书  如,三级 ==>二级 ==> 根 合成后 ...