NVIDIA数据中心深度学习产品性能

在现实世界的应用程序中部署AI,需要训练网络以指定的精度融合。这是测试AI系统的最佳方法-准备将其部署在现场,因为网络随后可以提供有意义的结果(例如,对视频流正确执行图像识别)。不收敛的训练是对指定AI网络上硬件吞吐能力的衡量,但不能代表实际应用。

NVIDIA的完整解决方案堆栈,从GPU到库,再到NVIDIA GPU Cloud(NGC)上的容器,都使数据科学家可以通过深度学习快速启动并运行。NVIDIAA100 Tensor Core GPU在各种规模上都提供了前所未有的加速,在MLPerf中创下了记录,这是AI行业领先的基准测试,也是对加速平台方法的证明。

MLPerf 0.7 AI基准测试上的NVIDIA性能

NVIDIA A100 Performance on MLPerf 0.7 AI Benchmarks

Training Natural Language Processing

Converged Training Performance

A100 Training Performance

V100 Training Performance

NVIDIA数据中心深度学习产品性能的更多相关文章

  1. NVIDIA TensorRT高性能深度学习推理

    NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高 ...

  2. NVIDIA GPUs上深度学习推荐模型的优化

    NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增 ...

  3. 基于NVIDIA GPUs的深度学习训练新优化

    基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...

  4. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2

    之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...

  5. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程

    基于NVidia开源的nvidia/cuda image,构建适用于DeepLearning的基础image. 思路就是先把常用的东西都塞进去,再装某个框架就省事儿了. 为了体验重装系统的乐趣,所以采 ...

  6. 英特尔与 Facebook 合作采用第三代英特尔® 至强® 可扩展处理器和支持 BFloat16 加速的英特尔® 深度学习加速技术,提高 PyTorch 性能

    英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了 ...

  7. paper 53 :深度学习(转载)

    转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算 ...

  8. 深度学习“引擎”之争:GPU加速还是专属神经网络芯片?

    深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引 ...

  9. 【AI in 美团】深度学习在OCR中的应用

    AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索.推荐.广告.风控.智能调度 ...

随机推荐

  1. 关于Oracle 数据库使用dba_tables或者all_tables或者user_tables统计数据时,与直接查询表统计时数据不一致的记录

    1. 今天写代码发现这个问题,这里记录一下, 不一致的原因是因为  dba_tables .all_tables.user_tables 不是实时的反应表的数据的,所以需要在查询统计之前对表进行手动分 ...

  2. 【MybatisPlus】使用Wrappers条件构造器构造or和and

    模糊查询中,会有针对一个数据,需要查询数据库的多个字段的情况,例如: 上图中的平台名称和平台进程在数据表中是两个不同的字段, 如果不使用Mybatisplus,仅使用Mybatis,则只有通过写xml ...

  3. 【beego】beego的路由设置

    beego 存在三种方式的路由:固定路由.正则路由.自动路由 基础路由 从 beego 1.2 版本开始支持了基本的 RESTful 函数式路由,应用中的大多数路由都会定义在 routers/rout ...

  4. vim 中文乱码解决

    问题如下: 在vim中编辑一个中文文本时 出现中文乱码情况 问题解决: 修改vimrc的脚本配置 编辑~/.vimrc文件,加上如下几行即可: set fileencodings=utf-8,ucs- ...

  5. hdu4923 f(A,B)分段处理

    题意:        给你序列A,让你构造序列B然后求出最小的f(A <B),其中A 是0,或者1组成的,而B是[0,1]的实数,f(A,B) = 求和(i从1到n) (Ai - Bi)^ 2. ...

  6. 哈希爆破神器Hashcat的用法

    目录 HashCat HshCat的使用 使用Hashcat生成字典 使用Hashcat破解NTLMv2 HashCat HashCat系列软件在硬件上支持使用CPU.NVIDIA GPU.ATI G ...

  7. MS06-040漏洞研究(中)【转载】

    课程简介 经过上次的分析,我们已经知道了MS06-040漏洞的本质,那么这次我们就通过编程实现漏洞的利用. 课程介绍 实验环境: 操作机: Windows XP 实验工具: Tools Path ID ...

  8. WDK 标准数据类型

    刚刚看到vs2012可以完美支持wdk开发,心中窃喜,正要下载,竟然看到xp不在其支持范围内, 这让刚刚从win7换过来的我真是DT,算了,还是和学习资料保持一致,反正学习的重点不是方便 正题: 为了 ...

  9. 0803-PyTorch的Debug指南

    0803-PyTorch的Debug指南 目录 一.ipdb 介绍 二.ipdb 的使用 三.在 PyTorch 中 Debug 四. 通过PyTorch实现项目中容易遇到的问题 五.第八章总结 py ...

  10. Could not contact [localhost:8005]. Tomcat may not be running.

    出错环境介绍: Tomcat-version:8.5.56 JDK-version:1.8.0_152 Linux:CentOS-7 错误信息 sh /opt/apache-tomcat-8.5.56 ...