Deformable 可变形的DETR

This repository is an official implementation of the paper Deformable DETR: Deformable Transformers for End-to-End Object Detection.

该存储库是论文《可变形DETR:用于端到端对象检测的可变形变压器》的正式实现。

https://github.com/fundamentalvision/deformable-detr

Introduction

Deformable DETR is an efficient and fast-converging end-to-end object detector. It mitigates the high complexity and slow convergence issues of DETR via a novel sampling-based efficient attention mechanism.

可变形DETR是一种高效且快速收敛的端到端对象检测器。通过一种新颖的基于采样的有效注意力机制,缓解了DETR的高复杂性和缓慢收敛的问题。

Abstract摘要

DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10× less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach.

最近提出了DETR,以消除目标检测中对许多手工设计组件的需求,同时表现出良好的性能。但是,由于Transformer注意模块在处理图像特征图时的局限性,它收敛缓慢且特征空间分辨率有限。为了缓解这些问题,提出了可变形DETR,其关注模块仅关注参考周围的一小部分关键采样点。可变形的DETR可以比DETR(尤其是在小物体上)获得更好的性能,训练时间减少10倍。在COCO Benchmark数据集上进行的大量实验证明了方法的有效性。

License

This project is released under the Apache 2.0 license.

项目是根据Apache 2.0许可发布的

Changelog

See changelog.md for detailed logs of major changes.

有关主要更改的详细日志,请参见changelog.md

Citing 引用可变形Deformable DETR

If you find Deformable DETR useful in your research, please consider citing:

如果发现Deformable可变形DETR在研究中很有用,考虑引用以下内容:

@article{zhu2020deformable,

title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},

author={Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},

journal={arXiv preprint arXiv:2010.04159},

year={2020}

}

Main Results

Note:

  1. All models of Deformable DETR are trained with total batch size of 32.
  2. Training and inference speed are measured on NVIDIA Tesla V100 GPU.
  3. "Deformable DETR (single scale)" means only using res5 feature map (of stride 32) as input feature maps for Deformable Transformer Encoder.
  4. "DC5" means removing the stride in C5 stage of ResNet and add a dilation of 2 instead.
  5. "DETR-DC5+" indicates DETR-DC5 with some modifications, including using Focal Loss for bounding box classification and increasing number of object queries to 300.
  6. "Batch Infer Speed" refer to inference with batch size = 4 to maximize GPU utilization.
  7. The original implementation is based on our internal codebase. There are slight differences in the final accuracy and running time due to the plenty details in platform switch.

笔记:

  1. 所有可变形DETR的模型都经过训练,总批次大小为32。
  2. 训练和推理速度是在NVIDIA Tesla V100 GPU上测量的。
  3. “可变形DETR(单比例)”表示仅将(步幅32的)res5特征图用作可变形变压器编码器的输入特征图。
  4. “ DC5”表示消除ResNet的C5阶段的步幅,而改为增加2。
  5. “ DETR-DC5 +”表示对DETR-DC5进行了一些修改,包括使用Focal Loss进行边界框分类以及将目标查询数增加到300。
  6. “批处理推断速度”指的是批处理大小= 4以最大程度地利用GPU的推理。
  7. 原始实现基于内部代码库。由于平台切换器中的大量细节,最终精度和运行时间略有不同。

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4
  • Python>=3.7

We recommend you to use Anaconda to create a conda environment: 建议使用Anaconda创建一个conda环境:

conda create -n deformable_detr python=3.7 pip

Then, activate the environment:

conda activate deformable_detr

  • PyTorch>=1.5.1, torchvision>=0.6.1

For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following: 如果CUDA版本是9.2,则可以按以下方式安装pytorch和torchvision:

conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch

  • Other requirements

pip install -r requirements.txt

Compiling CUDA operators

cd ./models/ops

sh ./make.sh

# unit test (should see all checking is True)

python test.py

Usage

Dataset preparation

Please download COCO 2017 dataset and organize them as following: 请下载COCO 2017数据集并按以下方式组织它们:

code_root/

└── data/

└── coco/

├── train2017/

├── val2017/

└── annotations/

├── instances_train2017.json

└── instances_val2017.json

Training

Training on single node

For example, the command for training Deformable DETR on 8 GPUs is as following: 例如,用于在8个GPU上训练可变形DETR的命令如下:

GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/r50_deformable_detr.sh

Training on multiple nodes

For example, the command for training Deformable DETR on 2 nodes of each with 8 GPUs is as following: 例如,用于在每个具有8个GPU的2个节点上训练Deformable DETR的命令如下:

On node 1:

MASTER_ADDR=<IP address of node 1> NODE_RANK=0 GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 16 ./configs/r50_deformable_detr.sh

On node 2:

MASTER_ADDR=<IP address of node 1> NODE_RANK=1 GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 16 ./configs/r50_deformable_detr.sh

Training on slurm cluster

If you are using slurm cluster, you can simply run the following command to train on 1 node with 8 GPUs: 如果使用的是Slurm集群,只需运行以下命令即可在具有8个GPU的1个节点上进行训练:

GPUS_PER_NODE=8 ./tools/run_dist_slurm.sh <partition> deformable_detr 8 configs/r50_deformable_detr.sh

Or 2 nodes of each with 8 GPUs:

GPUS_PER_NODE=8 ./tools/run_dist_slurm.sh <partition> deformable_detr 16 configs/r50_deformable_detr.sh

Some tips to speed-up training

  • If your file system is slow to read images, you may consider enabling '--cache_mode' option to load whole dataset into memory at the beginning of training.
  • You may increase the batch size to maximize the GPU utilization, according to GPU memory of yours, e.g., set '--batch_size 3' or '--batch_size 4'.
  • 如果文件系统读取图像的速度较慢,则可以考虑在训练开始时启用'--cache_mode'选项以将整个数据集加载到内存中。
  • 可以根据自己的GPU内存来增加批处理大小以最大程度地利用GPU,例如,设置'--batch_size 3'或'--batch_size 4'。

Evaluation

You can get the config file and pretrained model of Deformable DETR (the link is in "Main Results" session), then run following command to evaluate it on COCO 2017 validation set:

可以获取可变形DETR的配置文件和预训练模型(链接在“主要结果”会话中),然后运行以下命令在COCO 2017验证集中对其进行评估:

<path to config file> --resume <path to pre-trained model> --eval

You can also run distributed evaluation by using ./tools/run_dist_launch.sh or ./tools/run_dist_slurm.sh.

Deformable 可变形的DETR的更多相关文章

  1. R-CNN论文学习

    Rich feature hierarchies for accurate object detection and semantic segmentation Tech report (v5) pr ...

  2. Deformable Convolutional Networks-v1-v2(可变形卷积网络)

    如何评价 MSRA 视觉组最新提出的 Deformable ConvNets V2? <Deformable Convolutional Networks>是一篇2017年Microsof ...

  3. 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks

    上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...

  4. 关于DPM(Deformable Part Model)算法中模型结构的解释

    关于可变部件模型的描写叙述在作者[2010 PAMI]Object Detection with Discriminatively Trained Part Based Models的论文中已经有说明 ...

  5. 论文阅读笔记四十:Deformable ConvNets v2: More Deformable, Better Results(CVPR2018)

    论文源址:https://arxiv.org/abs/1811.11168 摘要 可变形卷积的一个亮点是对于不同几何变化的物体具有适应性.但也存在一些问题,虽然相比传统的卷积网络,其神经网络的空间形状 ...

  6. 论文阅读笔记三十八:Deformable Convolutional Networks(ECCV2017)

    论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络 ...

  7. Deformable ConvNets

    Deformable ConvNets 论文 Deformable Convolutional Networks(arXiv:1703.06211) CNN受限于空间结构,具有较差的旋转不变性,较弱的 ...

  8. DPM(Deformable Part Model)原理详解(汇总)

    写在前面: DPM(Deformable Part Model),正如其名称所述,可变形的组件模型,是一种基于组件的检测算法,其所见即其意.该模型由大神Felzenszwalb在2008年提出,并发表 ...

  9. AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

    接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言 ...

随机推荐

  1. Vulkan移植GpuImage(四)从D到O的滤镜

    现把D到O的大部分滤镜用vulkan的ComputeShader实现了,列举其中一些有点特殊的说明. GaussianBlurPosition 指定区域高斯模糊 没有按照GPUImage里的方式实现, ...

  2. 【CompletableFuture】CompletableFuture测试runAsync()方法调用

    问题 CompletableFuture.runAsync() 返回 CompletableFuture<Void>对象,调用CompletableFuture.allOf(f1,f2). ...

  3. Ubuntu20安装Truffle框架并部署第一个DApp

    1.查看Ubuntu版本信息 $ screenfetch 2.安装node ①查看nodejs官网稳定版(LTS)版本号(下面的14就是此时的版本号) ②添加源 $ curl -sL https:// ...

  4. Windows驱动派遣函数的学习

    //派遣处理例程的介绍: //IPR简介: //IRP全称(I/O Request Package),即输入输出请求包.他是windows驱动的重要概念,用户模式下所有对驱动程序的I/O请求,全部由操 ...

  5. LA3905流星

    题意:       在一个二维平面上有n个流星,每个流星有自己的初始位置和速度,有一个照相机,张相机的可视范围是一个矩形框,左下角(0,0)右上角(w ,h),然后问你相机的矩形内出现的最多的流星数是 ...

  6. hdu 5059 判断数字表示方式以及范围合法(int型之内)

    题意:       给你一个串和两个整数a,b,问你这个串表示的数字是否合法,并且在a,b之间, 和法的要求是无论是正数还是负数都没有前导0,并且注意 -0 是不合法的. 思路:       写了将近 ...

  7. hdu5015 矩阵快速幂233(好题)

    题意:       给你一个(n+1)*(m+1)的矩阵mat,然后给你mat[0][1] = 233 ,mat[0][2] = 2333,mat[0][3] = 23333...,然后输入mat[1 ...

  8. Linux下抓包命令tcpdump的使用

    在linux下,可以使用 tcpdump 命令来抓取数据包. 主要用法如下: 过滤网卡 tcpdump -i eth0 #抓取所有经过网卡eth0数据包 tcpdump -i lo #抓取环回口的数据 ...

  9. Spring Cloud Gateway + Nacos(1)简单配置

    当初我学习时候就是参考这位大佬的博客: Nacos集成Spring Cloud Gateway 基础使用 现在学习到spring cloud alibaba 使用nacos做服务中心,dubbo做通信 ...

  10. SQL Server强制使用特定索引 、并行度、锁

    SQL Server强制使用特定索引 .并行度 修改或删除数据前先备份,先备份,先备份(重要事情说三遍) 很多时候你或许为了测试.或许为了规避并发给你SQL带来的一些问题,常常需要强制指定目标sql选 ...