You are given an m x n integer matrix grid where each cell is either 0 (empty) or 1 (obstacle). You can move up, down, left, or right from and to an empty cell in one step.
Return the minimum number of steps to walk from the upper left corner (0, 0) to the lower right corner (m - 1, n - 1) given that you can eliminate at most k obstacles. If it is not possible to find such walk return -1.
 
       利用深度优先加回溯结果time Limited。。。
class Solution {
public:
int direction[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
int res=INT_MAX; int shortestPath(vector<vector<int>>& grid, int k) {
//这种题感觉就是递归回溯 但是有两个限制 一个是求最小步数(动态规划) 然后是求能够消除指定k个 障碍
//如果不ok就回溯一个
//lets have a try
//好久没写bfs了
int m=grid.size(),n=grid[0].size();
vector<vector<int>> memo(m,vector<int>(n,0));
dfs(grid,memo,0,0,k,m,n,0);
if(res==INT_MAX) return -1;
return res;
} bool inAera(int x,int y,int m,int n){
//judge aera
return x>=0 &&x<m &&y>=0 &&y<n;
}
void dfs(vector<vector<int>>& grid,vector<vector<int>> &memo,int x,int y,int k,int m,int n,int count)
{
if(x==m-1&&y==n-1 &&k>=0)
{
res=min(res,count);
return;
}
if(k<0) return;
//如何剪枝呢?
if(grid[x][y]==1 && k==0) return;
//当前格子做一个标注表示走过了
memo[x][y]=1;
for(int i=0;i<4;++i)
{
int x_next=x+direction[i][0];
int y_next=y+direction[i][1];
if(inAera(x_next,y_next,m,n) && k>=0 &&memo[x_next][y_next]==0){
dfs(grid,memo,x_next,y_next,k-grid[x][y],m,n,count+1);
}
}
memo[x][y]=0;//回溯
return; }
};
  利用队列实现广度优先:
class Solution {
public:
    int direction[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
    int res=INT_MAX;
    
    int shortestPath(vector<vector<int>>& grid, int k) {
        int m=grid.size(),n=grid[0].size();
        vector<vector<int>> memo(m,vector<int>(n,-1));//为啥是-1呢?
        //利用队列实现bfs
        if(k>=m+n-2) return m+n-2; //步数有富裕
        queue<tuple<int,int,int>>ss;
        memo[0][0]=k;
        ss.push({0,0,k});
        int level=0;
        while(!ss.empty()){
            auto sz=ss.size();
            ++level;
            while(sz--){
                //广度优先
                auto[x,y,ck]=ss.front();
                ss.pop();
                for(int i=0;i<4;++i){
                    int x_next=x+direction[i][0];
                    int y_next=y+direction[i][1];
                    if(inAera(x_next,y_next,m,n)){
                        int nk=ck-grid[x_next][y_next];
                        if(nk<0) continue;
                        if(memo[x_next][y_next]>=nk) continue;//不是最短的
                        if(x_next==m-1 && y_next==n-1)
                        {
                            return level;
                        }
                        memo[x_next][y_next]=nk;
                        ss.push({x_next,y_next,nk});
                    }
                    
                }
            }
        }
        return -1;   
    }
    bool inAera(int x,int y,int m,int n){
        //judge aera
        return x>=0 &&x<m &&y>=0 &&y<n;
    }
};

【leetcode】1293 .Shortest Path in a Grid with Obstacles的更多相关文章

  1. 【LeetCode】847. Shortest Path Visiting All Nodes 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/shortest ...

  2. 【leetcode】1129. Shortest Path with Alternating Colors

    题目如下: Consider a directed graph, with nodes labelled 0, 1, ..., n-1.  In this graph, each edge is ei ...

  3. 【leetcode】1091. Shortest Path in Binary Matrix

    题目如下: In an N by N square grid, each cell is either empty (0) or blocked (1). A clear path from top- ...

  4. LeetCode 1293. Shortest Path in a Grid with Obstacles Elimination

    题目 非常简单的BFS 暴搜 struct Node { int x; int y; int k; int ans; Node(){} Node(int x,int y,int k,int ans) ...

  5. 【LeetCode】71. Simplify Path 解题报告(Python)

    [LeetCode]71. Simplify Path 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://f ...

  6. 【LeetCode】64. Minimum Path Sum 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  7. 【LeetCode】64. Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  8. leetcode_1293. Shortest Path in a Grid with Obstacles Elimination_[dp动态规划]

    题目链接 Given a m * n grid, where each cell is either 0 (empty) or 1 (obstacle). In one step, you can m ...

  9. 【LeetCode】862. Shortest Subarray with Sum at Least K 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 队列 日期 题目地址:https://leetcod ...

随机推荐

  1. hdu 1069 Monkey and Banana(记忆搜)

    题意: N(不超过30)种木块,每种木块有长.宽.高x,y,z. 木块A可以搭在木块B上当且仅当A的底面长和宽都分别小于B的顶面的长与宽,即不能有超出B的部分. 问垒起来的"木块塔" ...

  2. Vue-cli4.xPC端项目Rem适配

    适配准备 安装 (amfe-flexible) 和(postcss-px2rem) 1, 安装依赖并在main.js中引入该依赖 npm i amfe-flexible import "am ...

  3. [Vue warn]: Unknown custom element: <sapn> - did you register the component correctly? For recursive components, make sure to provide the "name" option. found in ---> <Evaluate> at src/views/index/

    关于vue报错: [Vue warn]: Unknown custom element: <sapn> - did you register the component correctly ...

  4. 将python代码转化为c语言代码,提高运行效率

    将python代码转化为c语言代码,提高运行效率 首先,需要安装cpython库: pip install cython 安装完成之后,写一段简单的代码,例如下面这个利用递归求斐波那契数列的函数,然后 ...

  5. idea离线安装lombok插件

    1.查看自己idea版本,2019.1.2,必须安装相同版本的插件 2.从http://plugins.jetbrains.com/plugin/6317-lombok-plugin中下载对应版本的l ...

  6. 新技能GET!在前端表格中花式使用异步函数的奥义

    背景 60年代时,操作系统中独立运行的单元通常是进程.但随着计算机技术的发展,人们发现在进程运行过程中,创建.撤销与切换都要花费较大的时空开销. 到了80年代为了解决这一问题,出现了更小的独立运行基本 ...

  7. Java安全之基于Tomcat的通用回显链

    Java安全之基于Tomcat的通用回显链 写在前面 首先看这篇文还是建议简单了解下Tomcat中的一些概念,不然看起来会比较吃力.其次是回顾下反射中有关Field类的一些操作. * Field[] ...

  8. [hdu7097]Just a Data Structure Problem

    (四边形不等式的套路题) 对于某一组$a_{i}$,显然可以区间dp,设$f_{l,r}$表示区间$[l,r]$​的答案,则转移即$$f_{l,r}=\begin{cases}0&(l=r)\ ...

  9. [loj3302]信号传递

    由于n较大,可以将n个数中的关系对数量记录在$m*m$的矩阵中,记作$a[i][j]$ 考虑朴素的状压dp枚举排列,即$f[i]$表示以i中的数的一种排列为整个序列的前缀的最小代价,然后转移枚举下一个 ...

  10. 【Java面试题】-- Java基本类型

    Java基本类型 2019-11-03  19:03:48  by冲冲 1.两个float型相减丢失精度,如何解决? 使用BigDemical装饰器模式 public class Test { pub ...