KMP算法思路
题目
给定一个字符串\(S\),求\(M\)字符串是否是\(S\)字符串中的子串.如果是,返回\(M\)对应\(S\)的第一个下标,否则返回-1.
例如:S串为a b c d a b c d a b c d e
M串为a b c d e
结果:返回S串下标8.
个人想法
之前看过这种求子串的题,但是只在脑海中想象了一下,没有动手写出算法.
看到的时候心里就嘀咕肯定不能暴力求解,需要让子串\(M\)进行跳跃,但是没有具体地研究边界问题,也没有动手写一个字符串验证想法,导致想法很不靠谱.
之前的想法很粗糙:
挨个比较字符串,如果不相同,整体都跳跃,跳跃的方式是\(M\)串首位对其不匹配\(S\)串的下标位置.然后继续比较
大约就是这个样子,想到这就没继续往下想也没有去实现,这显然是错误的.跳跃是应该跳跃,但是不是那么粗糙的跳跃,假如字符串和子串是下面这种情况这种情况:
以我那种错误的想法是会产生bug的:
结果是\(S\)串不会包含\(M\)串,但事实上是包含的.(下文将目标串统一称作\(S\),子串统一称作\(M\))
那我们就应该考虑如何正确的跳跃.
KMP算法
知道了之前的想法是错误的,我们就应该找到符合各种边界的跳跃方式.只要确定了跳跃方式,KMP就很容易写出来了.KMP中提到了前缀表(或者最大相同前后缀)这些概念.前缀表暂时先不考虑,只谈谈如何进行跳跃才能满足边界.
继续回到之前的图,如果我们想要成功地找到下标,正确的跳跃方式应该是下图这样:
注意\(M\)串错误匹配项(\(M[5]\)元素d
)之前的元素(蓝色填充的a,b
).
好,为什么这么跳呢?
当确定\(S[5]\)和\(M[5]\)不匹配的时候,我们可以确定d
之前的项都是匹配的.即\(S[0-4]\)和\(M[0-4]\)是匹配的.
\(M[0-4]\)
对于已经匹配的\(M[0-4]\),前缀几项与后缀几项相同(即\(M[0]\),\(M[1]\)和\(M[3]\),\(M[4]\)是相同的),那么把\(M\)平移使\(M[0]\)对齐\(M[3]\)之前所处的位置,这一定能确保\(M[0]\),\(M[1]\)和之前\(M[3]\),\(M[4]\)与\(S\)对应的\(S[3]\),\(S[4]\)是匹配的,即一定能确保\(M[0]\),\(M[1]\)和\(S[3]\),\(S[4]\)是匹配的.
平移
那我们如何利用这个特点跳跃呢,现在我们生成一个辅助的前后缀相同的数组.
以a,b,c,a,b,d
为例,
M产生的子串 | 相同前后缀个数 | 备注:就把相同前后缀数组称为\(D\) |
---|---|---|
a | 0 | |
a,b | 0 | |
a,b,c | 0 | |
a,b,c,a | 1 | |
a,b,c,a,b | 2 | |
a,b,c,a,b,d | 0 | 最后一个匹配就可以返回了,所以用处不大 |
最后生成一个相同前后缀的数组可以与\(M\)对应起来
现在只需要解释一下如何使用相同前后缀数组进行跳跃,应该就能写出KMP的代码了.
当\(M[5]\)与\(S[5]\)不相同时,看一下前后缀数组\(D\)前一个位置的值,即\(D[4]\)的值为2,那么只需要将\(M[2]\)平移至\(M[5]\)的位置上就可以了.如果\(M[3]\)不匹配,后缀数组\(D\)的前一位\(D[2]\)是0,那么就把\(M[0]\)平移对其\(M[3]\)的位置就可以了.
假如\(M[0]\)不匹配的话,就直接往后跳一位,与\(S\)下一项比较.
KMP代码实现(JAVA)
整体思路就大致如此了,如果理解了应该可以按照思路写出代码了.
下面就贴一下代码实现,我只是简单地测试了一下,没有大量测试,但是整体思路应该大致如此,可能有些边界问题还没有考虑周全,欢迎指正.
public static int getIndexOf(String s, String m) {
if (s == null || m == null || m.length() < 1 || s.length() < m.length()) return -1;
char[] ss = s.toCharArray(), ms = m.toCharArray();
int si = 0, mi = 0;
int[] next = getMatchArray(ms);
int q = next[mi];
while (si < ss.length && mi < ms.length) {
if (ss[si] == ms[mi]) {
si++;
mi++;
} else {
if (mi != 0) {
mi = next[mi - 1];
} else {
si++;
}
}
}
return mi == ms.length ? si - mi : -1;
}
public static int[] getMatchArray(char[] ms) {
if (ms.length == 1) return new int[]{0};
int[] next = new int[ms.length];
next[0] = 0;
int j = 0, tail = 1;
while (tail < ms.length) {
j = next[tail] = ms[j] == ms[tail] ? (j + 1) : 0;
tail++;
}
return next;
}
public static void main(String[] args) {
String str = "abcabcababaccc";
String match = "ababa";
System.out.println(getIndexOf(str,match));
}
KMP算法思路的更多相关文章
- KMP算法代码
以下是本人根据上一篇博客随笔http://www.cnblogs.com/jiayouwyhit/p/3251832.html,所写的KMP算法代码(暂未优化),个人认为在基于上一篇博客的基础上,代码 ...
- Python 细聊从暴力(BF)字符串匹配算法到 KMP 算法之间的精妙变化
1. 字符串匹配算法 所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串.如在字符串 "ABCDEFG" 中查找是否存在 "EF" ...
- KMP算法之next数组的求解思路
2.next数组的求解思路 本部分内容转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algo ...
- 简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说 ...
- 萌新笔记——用KMP算法与Trie字典树实现屏蔽敏感词(UTF-8编码)
前几天写好了字典,又刚好重温了KMP算法,恰逢遇到朋友吐槽最近被和谐的词越来越多了,于是突发奇想,想要自己实现一下敏感词屏蔽. 基本敏感词的屏蔽说起来很简单,只要把字符串中的敏感词替换成"* ...
- 数据结构与算法JavaScript (五) 串(经典KMP算法)
KMP算法和BM算法 KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同 前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从 左到右 后缀匹配 ...
- 扩展KMP算法
一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...
- 字符串模式匹配之KMP算法图解与 next 数组原理和实现方案
之前说到,朴素的匹配,每趟比较,都要回溯主串的指针,费事.则 KMP 就是对朴素匹配的一种改进.正好复习一下. KMP 算法其改进思想在于: 每当一趟匹配过程中出现字符比较不相等时,不需要回溯主串的 ...
- 算法:KMP算法
算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...
随机推荐
- analysis_screencap
#!/usr/bin/env pythonfrom PIL import Imageimg = Image.open("./screen.png")maps = [[] for i ...
- jQuery中onload与ready区别
onload和ready的区别document.ready和onload的区别为:加载程度不同.执行次数不同.执行速度不同.1.加载程度不同 document.ready:是DOM结构绘制完毕后就执行 ...
- K8s 离线集群部署(二进制包无dashboard)
https://www.cnblogs.com/cocowool/p/install_k8s_offline.html https://www.jianshu.com/p/073577bdec98 h ...
- (数据科学学习手札130)利用geopandas快捷绘制在线地图
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中,我为大家介绍了不久前发布的 ...
- MyBatis-Plus 快速入门
1.简介 MyBatis-Plus (简称 MP)是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生. 1.1.特性 无侵入:只做增强不做改变, ...
- Linux usb 5. usbip (USB Over IP) 使用实例
文章目录 0. 简介 1. Server 配置 2. Client 配置 参考资料 0. 简介 USB Over IP 是一种应用很多的场景,目前已经有现成的解决方案 usbip.linux 和 wi ...
- yum install hadoop related client
yum list avaliable hadoop\* yum list installed yum repolist repo is in /etc/yum.repos.d yum install ...
- M1配置php环境完整版(用于M1芯片的Mac中,php开发环境,比如wordpress、"或wp"、emlog pro、typecho等本地开发环境的配置)
因为macbook发布的M1是基于arm架构的,导致很多软件在短时间没无法兼容,其中包括php的很多集成开发环境软件.于是需要手动配置.网上的信息也是零七八碎,故制作了这个完整的教程. 本教程基于的m ...
- 百度ueditor编辑器注入漏洞修补查杀程序
百度ueditor编辑器注入查杀程序,用于对百度ueditor的漏洞补丁进行查杀,使用时需要保证本地正确部署了.net 4.0服务. 百度ueditor编辑器是目前网上比较流行的一个网站编辑器,但由于 ...
- 【开源库推荐】#3 Android EventBus的使用
原文地址:[开源库推荐]#3 Android EventBus的使用 | Stars-One的杂货小窝 EventBus的Github Event bus for Android and Java t ...