KL散度非负性证明
1 KL散度
KL散度(Kullback–Leibler divergence) 定义如下:
$D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \log \left(\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}\right)$
目标:证明上式非负。
2 凸函数与凹函数
连续函数 $f(x)$ 的定义域为 $I$ ,如果对 $I$ 内任意两个实数 $x_{1}$ , $x_{2}$ 及任意实数 $\lambda \in(0,1)$ ,都有
$f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \quad \quad \quad (1)$
则称 $f(x)$ 为 $I $ 上的凸函数(下凸)。
若有
$f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \quad \quad \quad (2)$
则称 $f(x)$ 为 $I$ 上的凹函数(上凹)。
举例:
$log(x)$ 是凹函数,反之$-log(x)$ 是凸函数。
3 加权Jensen不等式
若 $f(x)$ 是区间 $[a, b]$ 上的凸函数,则对任意的实数 $x_{1}, x_{2}, \cdots, x_{n} \in[a, b] $,对所有非负实数 $a_{1}, a_{2}, \cdots a_{n} \geq 0$ , 且 $a_{1}+a_{2}+\cdots+a_{n}=1 $ ,则下列不等式成立。
$f\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right) \leq a_{1} f\left(x_{1}\right)+a_{2} f\left(x_{2}\right)+\cdots+a_{n} f\left(x_{n}\right)$
4 证明KL散度非负性
KL散度(Kullback–Leibler divergence) 定义如下:
$D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \log \left(\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}\right)$
其中:
$\sum \limits_{i=1}^{n} P\left(x_{i}\right)=1$
由于 $\log (x)$ 是凹函数,$-\log (x)$ 是凸函数,因此将 KL散度定义式先变形再应用加权Jensen不等式,得:
$\begin{array}{l}D_{K L}&=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \log \left(\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}\right)\\ &=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times\left(-\log \left(\frac{Q\left(x_{i}\right)}{P\left(x_{i}\right)}\right)\right) \\&\geq-\log \left(\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \frac{Q\left(x_{i}\right)}{P\left(x_{i}\right)}\right)\\&=-\log \left(\sum\limits_{i=1}^{n} Q\left(x_{i}\right)\right)\end{array}$
Tips:Jensen不等式中的 $x_i$ 在这里相当于 $\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}$; $f $ 相当于 $-\log()$ ;$a_i$ 相当于 $P\left(x_{i}\right)$ 。
由于 $Q\left(x_{i}\right)$ 是一个概率分布,因此和 $P\left(x_{i}\right)$ 一样满足下面的式子 $\sum\limits _{i=1}^{n} Q\left(x_{i}\right)=1$
因此可以得到
$D_{K L} \geq-\log (1)=0$
到此KL散度非负性得证。
KL散度非负性证明的更多相关文章
- 机器学习、深度学习中的信息熵、相对熵(KL散度)、交叉熵、条件熵
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今 ...
- 【原】浅谈KL散度(相对熵)在用户画像中的应用
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...
- KL散度与JS散度
1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度.对于两个概率分布P.Q,二者越相似,KL散度越小. KL散度的性质:P表示真实 ...
- 【机器学习基础】熵、KL散度、交叉熵
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...
- 从香农熵到手推KL散度
信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...
- 信息论相关概念:熵 交叉熵 KL散度 JS散度
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度 ...
- PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...
- 浅谈KL散度
一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...
- ELBO 与 KL散度
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...
随机推荐
- 【LeetCode】519. Random Flip Matrix 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/random-fl ...
- 1114. Boxes
1114. Boxes Time limit: 0.6 secondMemory limit: 64 MB N boxes are lined up in a sequence (1 ≤ N ≤ 20 ...
- 简单的 for 循环也会踩的坑
前言 最近实现某个业务时,需要读取数据然后再异步处理:在 Go 中实现起来自然就比较简单,伪代码如下: list := []*Demo{{"a"}, {"b"} ...
- JWT和OAuth2
JWT是一种认证协议 JWT提供了一种用于发布接入令牌(Access Token),并对发布的签名接入令牌进行验证的方法.令牌(Token)本身包含了一系列声明,应用程序可以根据这些声明 ...
- CS5210|低成本HDMI转VGA方案|CS5210参数说明
Capstone最新推出的一款HDMI转VGA音视频转接线或者转换器方案芯片CS5210. 其设计的优势在于内置晶振,外围电路器件较少设计简单,芯片封装集成度较高,方案BOM成本低,相比其他方案产品更 ...
- Java Web程序设计笔记 • 【第7章 会话跟踪技术】
全部章节 >>>> 本章目录 7.1 会话跟踪技术概述 7.1.1 为什么需要会话跟踪 7.1.2 会话的状态和跟踪 7.1.3 会话跟踪技术 7.1.4 会话跟踪工作流程 ...
- 编写Java程序,使用PreparedState实现对英雄数据的新增、删除和更新
返回本章节 返回作业目录 需求说明: 使用PreparedState实现对英雄数据的新增.删除和更新 英雄(t_hero)表结构 列名(含义) 数据类型 约束 id (序号) int 主键,自动增长 ...
- 编写Java程序,随机给定一个数字猜大小
返回本章节 返回作业目录 需求说明: 由系统随机生成一个1~100之间的整数. 通过控制台一直输入一个整数,比较该数与系统随机生成的那个数,如果大就输出"猜大了.",继续输入:如果 ...
- idea 创建Maven项目,Enable auto Import报“本地服务器没有从权威服务器上收到响应”
完整的报错信息:Could not transfer artifact org.apache.maven.plugins:maven-clean-plugin:pom:2.5 from/to cent ...
- store在模块化后,获取state中的值时undefined
目录结构 用this.$store.getters.showNotif ,加上模块名this.$store.getters.apply.showNotif都取不到值, 控制台打印store,发现这样的 ...