题面传送门

原题题号:Codeforces 883D

题意:

有 \(n\) 个位置,每个位置上要么有一条狗,要么有一根骨头,要么啥都没有。

现在你要给每个狗指定一个方向(朝左或朝右)。

朝左的狗可以到达它左边的所有位置,朝右的狗可以到达它右边的所有位置。它们的速度均为 \(1\) 格\(/s\)

如果一个格子上有骨头,那么最先到达这个格子上的狗可以吃掉这个骨头。

求最多能吃掉多少个骨头,以及最少需要多长时间才能达到这个局面。

\(n \in [1,10^5]\)

显然,如果只有 \(1\) 只狗,那么就暴力枚举它朝左还是朝右,然后取个 \(\max\) 即可。

如果有 \(2\) 只狗及以上,那么所有骨头都能被吃掉。

难点在于第二问。考虑二分答案 \(x\),需检查在 \(x\) 秒内这些狗能否吃掉所有骨头。

假设第 \(i\) 只狗的位置为 \(p_i\),那么这只狗要么吃掉 \([p_i-x,p_i]\) 之间的骨头,要么吃掉 \([p_i,p_i+x]\) 之间的骨头。

考虑 \(dp\)。\(dp_i=j\) 表示按位置从小到大排序,第 \(1\) 到第 \(i\) 只狗最多能吃掉前 \(j\) 个位置上的所有骨头。

你再预处理 \(s_i\),\(s_i\) 表示位置 \(1\) 到 \(i\) 总共多少个骨头。

分三种情况:

  1. 第 \(i\) 只狗向左走,也就是 \([p_i-x,p_i]\) 中有骨头没有被吃掉。这种情况满足的条件是前 \(i-1\) 只狗能够吃完 \([1,p_i-x-1)\) 中的所有骨头,也就是 \(dp_{i-1} \geq p_i-x\) 或 \(s_{p_i-x-1}=s_{dp_{i-1}}\),i.e. \((dp_{i-1},p_i-x-1)\) 中没有骨头,并更新 \(dp_i=\max(dp_i,p_i)\)。
  2. 第 \(i\) 只狗向右走。这种情况的满足条件是 \([1,p_i)\) 中所有骨头都被前 \(i-1\) 条狗吃掉。也就是 \(dp_{i-1} \geq p_i\) 或 \(s_{p_i-1}=s_{dp_{i-1}}\),并更新 \(dp_i=\max(dp_i,p_i+x)\)。
  3. 第 \(i\) 只狗向左走,第 \(i-1\) 只狗向右走。这种情况的满足条件是 \([p_{i-1},p_{i-1}+x]\cup[p_i-x,p_i]\) 可以包含 \([p_{i-1},p_i]\) 中所有骨头,并且 \(dp_{i-2} \geq p_{i-1}\) 或 \(s_{p_{i-1}-1}=s_{dp_{i-2}}\),并更新 \(dp_i=\max(dp_i,\max(p_i,p_{i-1}+x))\)

    为什么这三种情况能涵盖所有情况呢?

    考虑一只向右走的狗。显然它前面所有骨头都被吃掉了,要么是被它左边的狗吃掉了(情况 2),要么是被它右边的狗吃掉了(情况 3)。

    再考虑一只向左走的狗,根据上面的推论 \([1,p_i-x)\) 所有骨头都被吃掉了。而这些骨头只能被它左边的狗吃掉,所以只有 1 种情况,也就是情况 1。
/*
Contest: -
Problem: NFLSOJ 712
Author: tzc_wk
Time: 2020.10.20
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
typedef long long ll;
int n;char s[1000005];
int posd[1000005],cntd=0;
int posb[1000005],cntb=0;
int dp[1000005];
int hav[1000005];
inline bool check(int mid){
memset(dp,0,sizeof(dp));
for(int i=1;i<=cntd;i++){
if(dp[i-1]>=posd[i]||hav[posd[i]-1]==hav[dp[i-1]]) dp[i]=max(dp[i],posd[i]+mid);
if(dp[i-1]>=posd[i]-mid||hav[posd[i]-mid-1]==hav[dp[i-1]]) dp[i]=max(dp[i],posd[i]);
else return 0;
if(i>=2&&(posd[i-1]+mid>=posd[i]-mid||hav[posd[i-1]+mid]==hav[posd[i]-mid-1])&&(dp[i-2]>=min(posd[i-1],posd[i]-mid)||hav[dp[i-2]]==hav[min(posd[i-1],posd[i]-mid)-1]))
dp[i]=max(dp[i],max(posd[i],posd[i-1]+mid));
dp[i]=min(dp[i],n);
// printf("%d %d\n",i,dp[i]);
}
if(hav[dp[cntd]]==hav[n]) return 1;
return 0;
}
int main(){
scanf("%d%s",&n,s+1);
for(int i=1;i<=n;i++) if(s[i]=='D') posd[++cntd]=i;
for(int i=1;i<=n;i++) if(s[i]=='B') posb[++cntb]=i;
posb[cntb+1]=n+1;
for(int i=0;i<=cntb;i++){
for(int j=posb[i];j<posb[i+1];j++) hav[j]=i;
}
if(cntd==1){
int cntl=0,cntr=0,mxl=0,mxr=0;
for(int i=1;i<=posd[1];i++) if(s[i]=='B') cntl++,mxl=max(mxl,posd[1]-i);
for(int i=posd[1];i<=n;i++) if(s[i]=='B') cntr++,mxr=max(mxr,i-posd[1]);
if(cntl>cntr) printf("%d %d\n",cntl,mxl);
else if(cntr>cntl) printf("%d %d\n",cntr,mxr);
else printf("%d %d\n",cntl,min(mxl,mxr));
return 0;
}
// check(4);
int l=1,r=n,ans=-23987;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d %d\n",cntb,ans);
return 0;
}

【2020五校联考NOIP #8】狗的更多相关文章

  1. 【2020五校联考NOIP #6】三格缩进

    题意: 给出 \(n\) 个数 \(a_1,a_2,\dots,a_n\),你要进行 \(m\) 次操作,每次操作有两种类型: \(1\ p\ x\):将 \(a_p\) 改为 \(x\). \(2\ ...

  2. 【2020五校联考NOIP #8】自闭

    题目传送门 题意: 有一个 \(n \times m\) 的矩阵,里面已经填好了 \(k\) 个非负整数. 问是否能在其它 \(n \times m-k\) 个格子里各填上一个非负整数,使得得到的矩阵 ...

  3. 【2020五校联考NOIP #7】道路扩建

    题面传送门 题意: 给出一张 \(n\) 个点 \(m\) 条边的无向图 \(G\),第 \(i\) 条边连接 \(u_i,v_i\) 两个点,权值为 \(w_i\). 你可以进行以下操作一次: 选择 ...

  4. 【2020五校联考NOIP #4】今天的你依旧闪耀

    题面传送门 题意: 对于一个长度为 \(n\)(\(n\) 为偶数)的排列 \(p\),定义一次"变换"后得到的排列 \(p'\) 为: \(p'_i=\begin{cases}p ...

  5. 【2020五校联考NOIP #3】序列

    题面传送门 原题题号:Codeforces Gym 101821B 题意: 给出一个排列 \(p\),要你找出一个最长上升子序列(LIS)和一个最长下降子序列(LDS),满足它们没有公共元素.或告知无 ...

  6. 【2020五校联考NOIP #7】伟大的卫国战争

    题面传送门 题意: 数轴上有 \(n\) 个点,现在要在它们之间连 \(m\) 条边,第 \(i\) 条边连接 \(a_i,b_i\) 两个点. 现在你要钦定每条边连在数轴的上方还是下方,使得任意两条 ...

  7. 【2020五校联考NOIP #6】最佳观影

    题意: 给出一个 \(k \times k\) 的网格和 \(n\) 次操作.其中 \(k\) 为奇数. 每次操作给出一个数 \(m\).每次你要找出一个三元组 \((x,l,r)\) 使得: \(r ...

  8. 【2020五校联考NOIP #2】矩阵

    咕咕咕到现在~ 题面传送门 题意: 给出一个 \(n\times n\) 的矩阵 \(A\).要你求有多少个 \(n\times n\) 的矩阵 \(B\) 满足: 每一行都是 \(1\) 到 \(n ...

  9. 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你

    [五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...

随机推荐

  1. 浅尝装饰器-@staticmethod 和@classmethod

    [写在前面] 本帖归属于装饰器单元的学习,可以点击关键词'装饰器'查看其他博文讲解 [正文部分] 说到装饰器一开始我觉得很陌生,看了一下别人的博客讲解,原来以前学习遇到的静态方法@staticmeth ...

  2. Java:ConcurrentHashMap类小记-2(JDK7)

    Java:ConcurrentHashMap类小记-2(JDK7) 对 Java 中的 ConcurrentHashMap类,做一个微不足道的小小小小记,分三篇博客: Java:ConcurrentH ...

  3. Alpha Scrum Meeting汇总

    第一次Alpha Scrum Meeting 第二次Alpha Scrum Meeting 第三次Alpha Scrum Meeting 第四次Alpha Scrum Meeting 第五次Alpha ...

  4. Beta实际开发与初始计划的比较

    零.说明 本篇博客为Beta阶段开始十天后,实际开发工作与初始计划的比较 截止至本篇博客发布为止,团队所有成员已完成计网考试,将在本周日进行充分的接口测试 一.比较 1.与初始计划对比 初始计划 实际 ...

  5. 最小最大堆min-max Heap

    (1)由性质5只能插在奇数层,即根节点处,7下沉到右堆的min level,10下沉到max level,插入后满足min-max heap性质,很容易画出: (2)由性质80也是向右堆插入,且插入到 ...

  6. 转:VCS仿真vivado IP的方法

    vivado中的仿真库和模型与ISE中的是不一样的,因此在vivado中使用VCS进行仿真的方法也与ISE中不一样. VCS可以通过两种方法对XILINX的器件进行功能仿真和门级仿真,这两种方法是 P ...

  7. GDI+图形图像技术1

    System.Drawing命名空间提供了对GDI+基本图形功能的访问,其中一些子命名空间中提供了更高级的功能. GDI+由GDI发展而来,是Windows图形显示程序与实际物理设备之间的桥梁. GD ...

  8. poj 1330 Nearest Common Ancestors (最简单的LCA)

    题意: 给出一棵树的结构. 给出两个点X和Y,求它俩的LCA. 思路: 只需求两个点的LCA,用了两种方法,一种离线tarjan,一种直接搞. 看代码. 代码: 方法一:直接搞. int const ...

  9. CANN5.0黑科技解密 | 别眨眼!缩小隧道,让你的AI模型“身轻如燕”!

    摘要:CANN作为释放昇腾硬件算力的关键平台,通过深耕先进的模型压缩技术,聚力打造AMCT模型压缩工具,在保证模型精度前提下,不遗余力地降低模型的存储空间和计算量. 随着深度学习的发展,推理模型巨大的 ...

  10. 服务集与AP的配合

    一.实验目的 1)掌握添加无线网络配置 2)掌握配置信道和协议使用并配置在一个天线上同时运行两个服务集,即两个无线网络 二.实验仪器设备及软件 仪器设备:一台AC,两台AP,一台AR,一台LSW 软件 ...