Contest 2050 and Codeforces Round #718 (Div. 1 + Div. 2) 题解
竟然上 GM 了,incredible(
A
首先如果 \(2050\nmid n\) 那显然就 \(-1\) 了,否则答案显然为 \(\dfrac{n}{2050}\) 的各位数字和。
B
显然这个最小值就是全部 \(nm\) 个数中最小的 \(m\) 个数之和,用个优先队列什么的维护一下即可,时间复杂度 \(nm\log m\)
C
zszz 凭我们的猜结论大法可知答案唯一存在并且每次往左往下走即可构造出答案。
D
首先们知道对于一个点而言,最优走法肯定是先走 \(\dfrac{k}{2}\) 步使得花费最小,然后原路返回。
因此考虑设 \(dp_{i,j,t}\) 为从 \((i,j)\) 出发走 \(t\) 步的最小花费,转移就枚举下一步到达的点随便更新一下即可,最后的 \(ans_{i,j}=dp_{i,j,k/2}\times 2\)
E
这个题还稍微有点意思,而且我上 GM 还要多亏了这道题拉开手速的差距啊(
首先特判掉全是 P 的情况,这个贡献显然为 \(1\)。
一个 observation 是如果 P 的连续段个数 \(\ge 2\),那么第一个 C 的位置显然只可能是第 \(1\) 个或者第 \(2\) 个,否则前两个都是 P,而 P 的连续段个数 \(\ge 2\),因此这两个连续段之间的间隔 \(\ge 2\),大于前两个 P 之间的距离 \(1\),不符合条件。
这样就可以分情况讨论了,如果第一个 C 的位置 \(\ge 3\),那 P 只可能形成一个连续段,不难发现合法的排列方式只可能形如 PPP...PPCCC...CC
,也就是说 P 是一段前缀,C 是一段后缀,枚举前缀长度随便算算即可。
如果第一个 C 的位置 \(\le 2\),那么手玩一下也可以发现合法的排列方式只可能形如 (P)CCC...CCPCPCPCPP...P(C)
枚举前面一段 C 的长度然后二分一下 CPCPCPCPC...PC
的长度即可。
所以说这个 \(\bmod 998244353\) 是假的(
F
这个题现场就差一点点没想出来啊啊啊!要是现场切掉了说不定涨的就不是 \(147\) 分而是 \(247\) 分甚至更多了(白 日 做 梦
首先看到这种最大值的期望时通常考虑容斥,这题也不例外,考虑设 \(f_i\) 表示团的大小 \(\le i\) 的概率,那么这个概率等价于将全部 \(n\) 个点染成黑白两种颜色,使得以每个点为中心,半径为 \(i\) 的区域中都至少包含一个白点。
这又可以进一步转化:对于所有白点,到其距离 \(\le i\) 的区域的并集刚好包含了整棵树。
这个概率可以通过树形 \(dp\) 求出,我们记 \(dp_{i,j}\) 表示对于 \(i\) 子树中的点,若 \(j\ge 0\) 则 \(i\) 上方深度最浅的被覆盖的点离 \(i\) 的距离为 \(j\) 的概率,否则表示 \(i\) 子树中深度最深的未被覆盖的点离 \(i\) 的距离为 \(-j-1\) 的概率,考虑转移,假设我们合并 \(dp_u\) 和 \(dp_v\),其中 \(u\) 为 \(v\) 的父亲,那么考虑两个值 \(dp_{u,i}\) 和 \(dp_{v,j}\),如果 \(i+j\ge 0\) 那么显然它可以覆盖全部 \(u\) 的子树,并且还能再向上覆盖 \(\max(i,j-1)\) 层,否则 \(i\) 子树中深度最深的未被覆盖的点离 \(i\) 的距离为 \(\min(i,j-1)\)。按照树形背包的套路转移即可,初始值 \(dp_{u,-1}=dp_{u,i}=\dfrac{1}{2}\)
时间复杂度 \(\mathcal O(n^3)\)。
G
看数据范围有点像网络流,事实上此题的的确确是网络流,考虑什么样的四个点能够组成题目中所说的平行四边形,我们将坐标系划分成一个个 \(2\times 2\) 的网格,下记:
- 横纵坐标都是偶数的点为 \(0\) 类点
- 横坐标为奇数,纵坐标为偶数的点为 \(1\) 类点
- 横坐标为偶数,纵坐标为奇数的点为 \(2\) 类点
- 横纵坐标都是奇数的点为 \(3\) 类点
那么将网格图做这样的划分后,可能的平行四边形有以下情况(这里蒯了 George1123 的图):
不难发现这样的平行四边形一定存在一条路径包含四类点的边,并且起点一定是 \(1\) 号点,终点一定是 \(3\) 号点,即 \(1\to 0\to 2\to 3\),并且这显然是组成题目所说的平行四边形的充要条件。
故考虑在相邻的 \((1,0),(0,2),(2,3)\) 点之间连边,然后拆点跑最小割即最大流即可。
Contest 2050 and Codeforces Round #718 (Div. 1 + Div. 2) 题解的更多相关文章
- Educational Codeforces Round 76 (Rated for Div. 2) E. The Contest
Educational Codeforces Round 76 (Rated for Div. 2) E. The Contest(dp+线段树) 题目链接 题意: 给定3个人互不相同的多个数字,可以 ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
- Educational Codeforces Round 60 (Rated for Div. 2) 题解
Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...
- Educational Codeforces Round 59 (Rated for Div. 2) DE题解
Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...
- Educational Codeforces Round 58 (Rated for Div. 2) 题解
Educational Codeforces Round 58 (Rated for Div. 2) 题目总链接:https://codeforces.com/contest/1101 A. Min ...
随机推荐
- Less-(38~41) 堆叠注入
首先申明,Less-(38~41)可以采取和Less-(1~4)相同的解法:(一一对应) 然而,他们的漏洞其实更大,我们可以做更多具有破坏性的事情. 代码审计: Less-(38~41): 41的$s ...
- eclipse javase版安装插件开发web项目
最近学习开发javaweb,但是安装的却是java se版的eclipse,但其无法新建web项目,即找不到Dynamic Web.所以需要下载相应插件.以下为操作过程. 1. 在联网的情况下,打开e ...
- 【二食堂】Beta - 测试报告
Beta - 测试报告 测试过程中发现的bug Beta阶段的新bug 我们在Beta阶段的开发过程中就进行了测试,发现了许多bug.这其中后端的bug比较多,在这里我列举一些比较重要的功能性bug. ...
- Ajax配合后端实现Excel的导出
一.需求 在我们的日常开发中,可能经常需要遇到excel的导出,以往excel的导出服务器端都是使用的 GET 方法,但是某些情况下,服务器端只能使用 POST 方法,那么我们有没有好的方法实现exc ...
- spring cloud zuul的回退
当我们使用 @EnableZuulProxy 注解来开启zuul的路由时,默认在@EnableZuulProxy注解上就包含了@EnableCircuitBreaker注解,即开启了断路器功能.那么在 ...
- 华为HG255D挂卡中继专用旋风科技固件
正的挂卡不掉线不掉速,稳定上网看上去好像很NB的样子 挂卡设置教程:http://picimg.lshou.com/pic/clou ... /6/t/1/30247515.mp4 固件链接: htt ...
- 对SQLServer错误使用聚集索引的优化案例(千万级数据量)
前言: 半个月前发了文章 SQLServer聚集索引导致的插入性能低 终于等到生产环境休整半天,这篇文章是对前文的实际操作. 以下正文开始: 异常:近期发现偶尔有新数据插入超时. 分析:插入条码有多种 ...
- 51nod_1006 最长公共子序列,输出路径【DP】
题意: 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个 ...
- hdu 2086 A1 = ? (公式推导)
有如下方程:Ai = (Ai-1 + Ai+1)/2 - Ci (i = 1, 2, 3, .... n).若给出A0, An+1, 和 C1, C2, .....Cn.请编程计算A1 = ? Inp ...
- 前端---梳理 http 知识体系 1
最近看了http相关的知识点,觉得还是有必要整理下,这样对自己的网络知识体系也有帮助. http 是什么 http叫超文本传输协议,可以拆成超文本.传输.协议来理解 协议 http 是一个用在计算机里 ...