题目:CF474D Flowers

传送门


DP?递推?

首先可以很快看出这是一道 DP 的题目,但与其说是 DP,还不如说是递推

大家还记得刚学递推时教练肯定讲过的一道经典例题吗?就是爬楼梯,一个有 \(n\) 阶的楼梯,一个人爬上去,每次可以爬一阶也可以爬两阶,问有多少种爬法?其实这道题也是一样的,只不过把 \(2\) 换成了 \(k\) 而已。

于是我们开始分析,定义 \(dp[i]\) 为吃 \(i\) 个蛋糕的吃法总数。

很容易看出,如果 \(i<k\),就不可以一口气吃掉,只能一个一个吃,方法为 \(1\) 种。

如果 \(i==k\),就既可以一个一个吃掉,也可以一口气全部吃完,方法为 \(2\) 种。

如果 \(i>k\),就有两种吃法,既可以先吃 \(i-1\) 个,然后再吃一个,也可以先吃 \(i-k\) 个,再吃 \(k\) 个。方法为 \(dp[i-1]+dp[i-k]\) 种。

最后记得要开 long long,而且要一边加一边模 \(1000000007\)。

核心代码:

if(dp[i])continue;
if(i<k)
dp[i]=1;
else if(i==k)
dp[i]=2;
else
dp[i]=(dp[i-1]+dp[i-k])%1000000007;
sum[i]=(sum[i-1]+dp[i])%1000000007;

因为一组数据只有一个 \(k\),但是有很多组关于这个 \(k\) 的测试点,所以可以用一个前缀和数组统计 \(dp_1\sim dp_i\) 的和,然后根据题目中 \(mod\ 1000000007\)。


玄学优化

其实这个优化也不难想到。既然一组数据中只会有一个 \(k\),那么说明不管怎么算,\(dp[i]\) 的值算出来都是相等的。那么可以判断一下当前出现的最大 \(x_2\),如果一组输入的 \(x_2\) 值小于最大值,就说明 \(dp[x_2]\) 已经计算过,直接输出即可。


\(Code\)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int t,k,x1,x2,Max=1;
ll dp[100005],sum[100005];
int main(){
scanf("%d %d",&t,&k);
while(t--){
scanf("%d %d",&x1,&x2);
if(Max>=x2){ //优化:判断x2和max(x2)的大小
printf("%lld\n",(sum[x2]-sum[x1-1])%1000000007);
continue;//直接跳过
}
for(int i=Max;i<=x2;i++){//只计算没计算过的
if(dp[i])continue;
if(i<k)
dp[i]=1;
else if(i==k)
dp[i]=2;
else
dp[i]=(dp[i-1]+dp[i-k])%1000000007;
sum[i]=(sum[i-1]+dp[i])%1000000007;
}
printf("%lld\n",(sum[x2]-sum[x1-1])%1000000007);
Max=x2;//更新Max的值
}
return 0;
}

究竟是什么地方错了?

然后你交上去发现WA了!

这也就是一个本蒟蒻在做题时犯的错误。

一般要取余的题都是一边计算一边取模,所以可能会造成dp数组中前面的值大于后面的值的情况。在最终计算 \(x_1\sim x_2\) 的时候做的减法运算可能是负数,负数取模就出事了。

那如何解决呢?其实很简单,只需要在取模之前再加上一个 \(1000000007\) 就可以了。

\(Code\)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int t,k,x1,x2,Max=1;
ll dp[100005],sum[100005];
int main(){
scanf("%d %d",&t,&k);
while(t--){
scanf("%d %d",&x1,&x2);
if(Max>=x2){
printf("%lld\n",(sum[x2]-sum[x1-1]+1000000007)%1000000007);
continue;
}
for(int i=Max;i<=x2;i++){
if(dp[i])continue;
if(i<k)
dp[i]=1;
else if(i==k)
dp[i]=2;
else
dp[i]=(dp[i-1]+dp[i-k])%1000000007;
sum[i]=(sum[i-1]+dp[i])%1000000007;
}
printf("%lld\n",(sum[x2]-sum[x1-1]+1000000007)%1000000007);
Max=x2;
}
return 0;
}

终于A了!www

CF474D Flowers 题解的更多相关文章

  1. CF474D. Flowers

    D. Flowers time limit per test 1.5 seconds memory limit per test 256 megabytes input standard input ...

  2. Luogu CF451E Devu and Flowers 题解报告

    题目传送门 [题目大意] 有n种颜色的花,第i种颜色的花有a[i]朵,从这些花中选m朵出来,问有多少种方案?答案对109+7取模 [思路分析] 这是一个多重集的组合数问题,答案就是:$$C_{n+m- ...

  3. CF740B Alyona and flowers 题解

    Content 有 \(n\) 个数 \(a_1,a_2,a_3,...,a_n\),给定 \(m\) 个区间,你可以选择一些区间使得它们的总和最大(也可以不选),求这个最大的总和. 数据范围:\(1 ...

  4. [题解] [CF451E] Devu and Flowers

    题面 题解 就是一个求\(\sum_{i= 1}^{n}x _ i = m\)的不重复多重集的个数, 我们可以由容斥原理得到: \[ ans = C_{n + m - 1}^{n - 1} - \su ...

  5. 题解 【POJ1157】LITTLE SHOP OF FLOWERS

    先把题目意思说一下: 你有F束花,编号为\(1\)~\(F\)(\(1<=F<=100\)),\(V\)个花瓶,编号为\(1\) ~\(V\)(\(1<=V<=100\)), ...

  6. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  7. Codeforces Round #381 (Div. 2)B. Alyona and flowers(水题)

    B. Alyona and flowers Problem Description: Let's define a subarray as a segment of consecutive flowe ...

  8. CF459B Pashmak and Flowers (水

    Pashmak and Flowers Codeforces Round #261 (Div. 2) B. Pashmak and Flowers time limit per test 1 seco ...

  9. Codeforces Round #271 (Div. 2)题解【ABCDEF】

    Codeforces Round #271 (Div. 2) A - Keyboard 题意 给你一个字符串,问你这个字符串在键盘的位置往左边挪一位,或者往右边挪一位字符,这个字符串是什么样子 题解 ...

随机推荐

  1. gomod使用小结

    gomod使用小结 使用方法 把工程拷贝到$GOPATH/src之外 在工程目录下执行:go mod init {module name}该命令会创建一个go.mod文件 然后在该目录下执行 go b ...

  2. Linux用户体系

    1.系统中和用户相关的文件 (1)/etc/passwd:记录系统用户信息文件 (2)/etc/shadow:系统用户密码文件 (3)/etc/group:组用户信息文件 (4)/etc/gshado ...

  3. 混沌工程之ChaosToolkit使用之一删除K8s POD

    今天我们来玩一下混沌工程的开源工具chaostoolkit . 它的目标是提供一个免费,开放,社区驱动的工具集以及api. 官方源码链接:https://github.com/chaostoolkit ...

  4. LeSS 的诞生(一):大规模团队该何去何从

    <敏捷宣言>发布后,"敏捷"被越来越多的小型开发团队认可.与此同时,另一个问题也逐渐暴露了出来:以 Scrum 为首的敏捷方法论对那些大规模的开发团队并不友好. 基于此 ...

  5. Docker:Linux离线安装docker

    docker离线下载路径 docker所有版本:https://download.docker.com/linux/static/stable/ 离线安装 1.解压 #解压tar包 tar -xvf ...

  6. webView远程代码执行漏洞复现

    一.概述 这个漏洞只存在于Android API level 16以及之前的版本,系统没有限制使用webView.addJavascriptInterface方法,导致攻击者可以通过使用java 反射 ...

  7. Java8 Map中新增的方法使用总结

    前言 得益于 Java 8 的 default 方法特性,Java 8 对 Map 增加了不少实用的默认方法,像 getOrDefault, forEach, replace, replaceAll, ...

  8. 跨域解决之JSONP和CORS的详细介绍

    JSONP跨域和CORS跨域 什么是跨域? 跨域:指的是浏览器不能执行其它网站的脚本,它是由浏览器的同源策略造成的,是浏览器的安全限制! 同源策略 同源策略:域名.协议.端口均相同. 浏览器执行Jav ...

  9. XSS challenges 1-10

    学长发的xss靶场,刚好js学完了,上手整活. 这个提示说非常简单,直接插入就完事了 <script>alert(document.domain)</script> 第二关. ...

  10. bugku flag在index里面

    先点进去看看. 看到file,似乎在暗示着我们,php://filter/read/convert.base64-encode/resource=index.php, 这句将index.php内容用b ...