1552: Cow Cycling

时间限制(普通/Java):1000MS/10000MS     内存限制:65536KByte
总提交: 39            测试通过:20

描述

The cow bicycling team consists of N (1 <= N <= 20) cyclists.  They wish to determine a race strategy which will get one of them across the finish line as fast as possible.

Like everyone else, cows race bicycles in packs because that's the most efficient way to beat the wind.  While travelling at x laps/minute (x is always an integer), the head of the pack expends x*x energy/minute while the rest of pack drafts behind him using only x energy/minute.  Switching leaders requires no time though can only happen after an integer number of minutes.  Of course, cows can drop out of the race at any time.

The cows have entered a race D (1 <= D <= 100) laps long.  Each cow has the same initial energy, E (1 <= E <= 100).

What is the fastest possible finishing time?  Only one cow has to cross the line.  The finish time is an integer.  Overshooting the line during some minute is no different than barely reaching it at the beginning of the next minute (though the cow must have the energy left to cycle the entire minute).  N, D, and E are integers.

输入

A single line with three integers: N, E, and D

输出

A single line with the integer that is the fastest possible finishing time for the fastest possible cow.  Output 0 if the cows are not strong enough to finish the race.

样例输入

3 30 20

样例输出

7

提示

as shown in this chart:
                                 leader E
                    pack  total used this
time  leader  speed   dist   minute
   1       1       5        5       25
   2       1       2        7        4
   3       2*     4       11      16
   4       2       2       13       4
   5       3*     3       16       9
   6       3       2       18       4
   7       3       2       20       4
* = leader switch

题意:有N头奶牛,每头奶牛的能量是E,现在有一个任务是跑完D圈,但是只要有一头奶牛完成这个任务就算通过。每次需要有一头奶牛领跑,其他的奶牛可以选择继续跟着跑或者离开队伍。领跑的奶牛能量

消耗是x*x laps/min,跟跑的能量消耗是x laps/min,然后让你计算最短需要多少时间完成任务。

题解:有N头奶牛,那么当N-1头奶牛都领跑过,那么最后一头奶牛去完成任务就成了。

状态:wxl[i][j][t],第i头奶牛跑 j 圈,消耗t能量所花费的最短时间。

状态转移方程:wxl[i+1][j][j]=min(wxl[i+1][j][j],wxl[i][j][t]);//换奶牛领跑不消耗时间      wxl[i][j+l][l*l+t]=min(wxl[i][j][t]+1,wxl[i][j+l][l*l+t]);

 #include "bits/stdc++.h"
using namespace std;
#define INF 0x3f3f3f3f
int wxl[][][];//存状态,第i头奶牛跑j圈,第i头奶牛消耗t所花费的最小时间
int main()
{
ios::sync_with_stdio(false);
cin.tie();cout.tie();//输入输出加速
int n,e,d,i,j,t,l,sum=INF;
cin>>n>>e>>d;
for(i=;i<=n;++i)for(j=;j<=d;++j)for(t=;t<=e;++t)wxl[i][j][t]=INF;
wxl[][][]=;
for(i=;i<=n;++i)for(j=;j<=d;++j)for(t=;t<=e;++t)
{
if(wxl[i][j][t]==INF)continue;
for(l=;l+j<=d&&l*l+t<=e;++l)wxl[i][j+l][l*l+t]=min(wxl[i][j][t]+,wxl[i][j+l][l*l+t]);
wxl[i+][j][j]=min(wxl[i+][j][j],wxl[i][j][t]);//换奶牛领跑不消耗时间
}
for(i=;i<=e;++i)sum=min(sum,wxl[n][d][i]);
cout<<sum<<endl;//当完不成任务时输出wxl[n][d][0];
}
//状态转移方程是wxl[i][t+l][l*l+t]=min(wxl[i][j][t]+1,wxl[i][t+l][l*l+t]);wxl[i+1][j][j]=min(wxl[i+1][j][j],wxl[i][j][t]);

Cow Cycling 动态规划的更多相关文章

  1. [USACO2002][poj1946]Cow Cycling(dp)

    Cow CyclingTime Limit: 1000MS Memory Limit: 30000KTotal Submissions: 2468 Accepted: 1378Description ...

  2. POJ 1946 Cow Cycling

    Cow Cycling Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 2516   Accepted: 1396 Descr ...

  3. POJ3267——The Cow Lexicon(动态规划)

    The Cow Lexicon DescriptionFew know that the cows have their own dictionary with W (1 ≤ W ≤ 600) wor ...

  4. POJ3176——Cow Bowling(动态规划)

    Cow Bowling DescriptionThe cows don't use actual bowling balls when they go bowling. They each take ...

  5. POJ - 3176 Cow Bowling 动态规划

    动态规划:多阶段决策问题,每步求解的问题是后面阶段问题求解的子问题,每步决策将依赖于以前步骤的决策结果.(可以用于组合优化问题) 优化原则:一个最优决策序列的任何子序列本身一定是相当于子序列初始和结束 ...

  6. POJ 1946 Cow Cycling(抽象背包, 多阶段DP)

    Description The cow bicycling team consists of N (1 <= N <= 20) cyclists. They wish to determi ...

  7. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

  8. PKU 3267 The Cow Lexicon(动态规划)

    题目大意:给定一个字符串和一本字典,问至少需要删除多少个字符才能匹配到字典中的单词序列.PS:是单词序列,而不是一个单词 思路:                                     ...

  9. poj 3267 The Cow Lexicon (动态规划)

    The Cow Lexicon Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8167   Accepted: 3845 D ...

随机推荐

  1. 框架及其技术(Android)

    Log框架: Logger: 简单,漂亮,强大的Android日志工具 Hugo:    在调试版本上注解的触发方法进行日志记录 Timber: 一个小的,可扩展的日志工具 响应式编程: RxJava ...

  2. ubuntu 16.04 国内仓库地址

    deb http://mirrors.aliyun.com/ubuntu xenial maindeb http://mirrors.aliyun.com/ubuntu xenial universe ...

  3. Splunk 简单笔记

    Splunk Notes source="c:\logs\abc.log" | rex field=url "(?<=\/)(?<ApiId>\w+?) ...

  4. CentOS 7 Gitlab+Jenkins持续集成+自动化部署

    基于上次的环境<部署Gitlab+Jenkins持续集成环境> 来实现自动化部署 系统管理–>插件管理–>安装以下插件: Credentials Plugin(默认已经安装) ...

  5. 判断是否为JSON对象

    $.ajax({ type: 'POST', url: url, success(function(data){ //判断是否为JSON对象 if(typeof(data) == "obje ...

  6. sitecore 8.2 item属性查询

    查询: query:/sitecore/content/[@@templatename='Homepage'] 结果: home (name: home, path: /sitecore/conten ...

  7. AndroidStudio 快捷键(最实用的20个)(转)

    有时候用的编辑器多了,快捷键容易记混淆,所以我门只用记最实用的快捷键就行了,其他效率不高的到要用的时候再查也不迟 下面是我使用AndroidStudio以来最常用的也是我认为最有用的20个快捷键 给大 ...

  8. python 2 和 python 3 的区别

    p2:重复代码语言不统一不支持中文input() 输入数字 获取数字输入字符串必须自己手动写引号raw_input 和p3中的 input 一样print可以加括号 也可以不加括号p2 中除法获取到的 ...

  9. Winform 加载datagridview

    string str = @"Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=Test;Integrated Security=True ...

  10. Oracle GoldenGate 18.1发布

    软件下载地址:https://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html 文档下载地址: https:/ ...