Cow Cycling 动态规划
1552: Cow Cycling
时间限制(普通/Java):1000MS/10000MS 内存限制:65536KByte
总提交: 39 测试通过:20
描述
The cow bicycling team consists of N (1 <= N <= 20) cyclists. They wish to determine a race strategy which will get one of them across the finish line as fast as possible.
Like everyone else, cows race bicycles in packs because that's the most efficient way to beat the wind. While travelling at x laps/minute (x is always an integer), the head of the pack expends x*x energy/minute while the rest of pack drafts behind him using only x energy/minute. Switching leaders requires no time though can only happen after an integer number of minutes. Of course, cows can drop out of the race at any time.
The cows have entered a race D (1 <= D <= 100) laps long. Each cow has the same initial energy, E (1 <= E <= 100).
What is the fastest possible finishing time? Only one cow has to cross the line. The finish time is an integer. Overshooting the line during some minute is no different than barely reaching it at the beginning of the next minute (though the cow must have the energy left to cycle the entire minute). N, D, and E are integers.
输入
A single line with three integers: N, E, and D
输出
A single line with the integer that is the fastest possible finishing time for the fastest possible cow. Output 0 if the cows are not strong enough to finish the race.
样例输入
3 30 20
样例输出
7
提示
as shown in this chart:
leader E
pack total used this
time leader speed dist minute
1 1 5 5 25
2 1 2 7 4
3 2* 4 11 16
4 2 2 13 4
5 3* 3 16 9
6 3 2 18 4
7 3 2 20 4
* = leader switch
题意:有N头奶牛,每头奶牛的能量是E,现在有一个任务是跑完D圈,但是只要有一头奶牛完成这个任务就算通过。每次需要有一头奶牛领跑,其他的奶牛可以选择继续跟着跑或者离开队伍。领跑的奶牛能量
消耗是x*x laps/min,跟跑的能量消耗是x laps/min,然后让你计算最短需要多少时间完成任务。
题解:有N头奶牛,那么当N-1头奶牛都领跑过,那么最后一头奶牛去完成任务就成了。
状态:wxl[i][j][t],第i头奶牛跑 j 圈,消耗t能量所花费的最短时间。
状态转移方程:wxl[i+1][j][j]=min(wxl[i+1][j][j],wxl[i][j][t]);//换奶牛领跑不消耗时间 wxl[i][j+l][l*l+t]=min(wxl[i][j][t]+1,wxl[i][j+l][l*l+t]);
#include "bits/stdc++.h"
using namespace std;
#define INF 0x3f3f3f3f
int wxl[][][];//存状态,第i头奶牛跑j圈,第i头奶牛消耗t所花费的最小时间
int main()
{
ios::sync_with_stdio(false);
cin.tie();cout.tie();//输入输出加速
int n,e,d,i,j,t,l,sum=INF;
cin>>n>>e>>d;
for(i=;i<=n;++i)for(j=;j<=d;++j)for(t=;t<=e;++t)wxl[i][j][t]=INF;
wxl[][][]=;
for(i=;i<=n;++i)for(j=;j<=d;++j)for(t=;t<=e;++t)
{
if(wxl[i][j][t]==INF)continue;
for(l=;l+j<=d&&l*l+t<=e;++l)wxl[i][j+l][l*l+t]=min(wxl[i][j][t]+,wxl[i][j+l][l*l+t]);
wxl[i+][j][j]=min(wxl[i+][j][j],wxl[i][j][t]);//换奶牛领跑不消耗时间
}
for(i=;i<=e;++i)sum=min(sum,wxl[n][d][i]);
cout<<sum<<endl;//当完不成任务时输出wxl[n][d][0];
}
//状态转移方程是wxl[i][t+l][l*l+t]=min(wxl[i][j][t]+1,wxl[i][t+l][l*l+t]);wxl[i+1][j][j]=min(wxl[i+1][j][j],wxl[i][j][t]);
Cow Cycling 动态规划的更多相关文章
- [USACO2002][poj1946]Cow Cycling(dp)
Cow CyclingTime Limit: 1000MS Memory Limit: 30000KTotal Submissions: 2468 Accepted: 1378Description ...
- POJ 1946 Cow Cycling
Cow Cycling Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2516 Accepted: 1396 Descr ...
- POJ3267——The Cow Lexicon(动态规划)
The Cow Lexicon DescriptionFew know that the cows have their own dictionary with W (1 ≤ W ≤ 600) wor ...
- POJ3176——Cow Bowling(动态规划)
Cow Bowling DescriptionThe cows don't use actual bowling balls when they go bowling. They each take ...
- POJ - 3176 Cow Bowling 动态规划
动态规划:多阶段决策问题,每步求解的问题是后面阶段问题求解的子问题,每步决策将依赖于以前步骤的决策结果.(可以用于组合优化问题) 优化原则:一个最优决策序列的任何子序列本身一定是相当于子序列初始和结束 ...
- POJ 1946 Cow Cycling(抽象背包, 多阶段DP)
Description The cow bicycling team consists of N (1 <= N <= 20) cyclists. They wish to determi ...
- 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树
[BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...
- PKU 3267 The Cow Lexicon(动态规划)
题目大意:给定一个字符串和一本字典,问至少需要删除多少个字符才能匹配到字典中的单词序列.PS:是单词序列,而不是一个单词 思路: ...
- poj 3267 The Cow Lexicon (动态规划)
The Cow Lexicon Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8167 Accepted: 3845 D ...
随机推荐
- js中类似null==flase的比较图集
以上是比较全的图集了,大家可以自行测试.
- 一次 Spark SQL 性能提升10倍的经历(转载)
1. 遇到了啥问题 是酱紫的,简单来说:并发执行 spark job 的时候,并发的提速很不明显. 嗯,且听我慢慢道来,啰嗦点说,类似于我们内部有一个系统给分析师用,他们写一些 sql,在我们的 sp ...
- MATLAB程序控制语句
Matlab中的程序控制语句包括条件控制(Conditional Control).循环(Loop Control).异常处理(Error Control)和程序返回(Program Terminat ...
- Oracle 12C 密码文件问题 ORA-01017: invalid username/password; logon denied
新安装的Oracle 12.1.0.2.0,NBU在测试备份的时候报ORA-01017 --alter user sys identified by "Wwjd!23";sqlpl ...
- 构造方法,this关键字,static关键字,封装,静态变量
1.构造方法 构造方法是一种特殊的方法,是专门用于创建/实例化对象的方法. 构造方法根据是否有参数分为两类:1.无参构造方法 2.有参构造方法 1.1无参构造方法 无参构造方法就是构造方法中没有参数 ...
- ubuntu 切换到ROOT权限
1.sudo+命令,输入当前用户密码后以root权限执行命令,有时间限制且仅限当前命令. 2.sudo -i,输入当前用户密码后以root权限登录shell,无时间限制.使用exit或logout退出 ...
- ABP 2.0.2 升到 2.2.1
1.选择解决方案 右键 管理 nuget 更新 输入abp 这里只升级 abp的包 点升级 2.update-database 可能需要你添加个迁移(这一步可能不需要) 3.Core 项目下面的Au ...
- 目标检测方法——R-FCN
R-FCN论文阅读(R-FCN: Object Detection via Region-based Fully Convolutional Networks ) 目录 作者及相关链接 方法概括 方法 ...
- spring boot + vue + element-ui全栈开发入门——项目部署
前言 常用的部署方式有两种: 1.是把生成好的静态页面放到spring boot的static目录下,与打包后的spring boot项目一起发布,当spring boot运行起来后,自然而然就能访 ...
- delphi 的一些注意点和知识点
关于Delphi中产生的文件 编辑阶段: pas/单元文件,dpk/组件包文件,dpr/工程文件,dfm/窗体文件 编译阶段: dcu/单元编译文件,dcp/Delphi Compile ...