buaaoo_first_improvement
优化,还是不优化,这是个问题
本讨论仅基于程序基本上正确的情况下。
(一)第一次作业
众所周知,本次作业没有优化到100分的都进入了B组或者C组,所以事实上本次作业的优化是十分简单的,在这里提几句。
(1)合并同类项
最简单的做法也是最高效的做法,通过Hashmap,将指数存为key,将系数作为对应value,那么可以很简单的将同类项进行合并。
(2)对项进行省略
当然,+0,0*,1*,等这样无意义的项,仅需要做特殊判断,那么就可以直接省略,从而缩减表达式的长度。
(3)对项进行排序
对于负数,会比正数多一个不必要的符号,所以我们可以直接将负号作为减号放到项中,所以最好的做法是对所有在Hashmap里的系数做一个判断,先输出正项,若无正项,则输出负项。
经过以上三种处理,第一次作业便可以完美的将表达式化简为最简形式。
(二)第二次作业
本部分是本次讨论的重点部分。
第二次作业开始,大家的算法实现就变得五花八门,面向过程的,面向对象的,不一而足。
所以在这里我要基于一个看起来似乎是解决本次作业最好的算法来讨论化简。
根据题目可以得知,每一个原子项可以写成如下形式(请原谅我的超长正则):
(([+-]{0,3}\\d+)|([+-]{0,2}x(\\^[+-]?\\d+)?)|([+-]{0,2}sin\\(x\\)(\\^[+-]?\\d+)?)|([+-]{0,2}cos\\(x\\)(\\^[+-]?\\d+)?))(\\*(([+-]?\\d+)|(x(\\^[+-]?\\d+)?)|(sin\\(x\\)(\\^[+-]?\\d+)?)|(cos\\(x\\)(\\^[+-]?\\d+)?)))*
所以首先应该做的是对于原子项中的因子合并,从而形成形如a*x^b*sin(x)^c*cos(x)^d的形式,进而大大缩短了处理难度,下面放出我的合并函数:
for (String it : ob) {
if (it.matches("[+\\-]?\\d+")) {
num = num.multiply(new BigInteger(it));
}
else if (it.matches("[+-]?sin\\(x\\)(\\^[+-]?\\d+)?")) {
if (it.substring(0, 1).matches("-")) {
num = num.multiply(new BigInteger("-1"));
}
sin = "sin(x)^" + combine(sin, it);
}
else if (it.matches("[+-]?cos\\(x\\)(\\^[+-]?\\d+)?")) {
if (it.substring(0, 1).matches("-")) {
num = num.multiply(new BigInteger("-1"));
}
cos = "cos(x)^" + combine(cos, it);
}
else if (it.matches("[+-]?x(\\^[+-]?\\d+)?")) {
if (it.substring(0, 1).matches("-")) {
num = num.multiply(new BigInteger("-1"));
}
x = "x^" + combine(x, it);
}
}
private String combine(String sss, String it) {
Pattern p = Pattern.compile("\\^");
Matcher m = p.matcher(it);
BigInteger b1;
BigInteger b2;
if (sss.equals("")) {
if (m.find()) {
String t = it.substring(m.start() + 1);
return t;
}
else {
return "1";
}
}
else {
Pattern pp = Pattern.compile("\\^");
Matcher mm = pp.matcher(sss);
if (mm.find()) {
b1 = new BigInteger(sss.substring(mm.start() + 1));
if (m.find()) {
b2 = new BigInteger(it.substring(m.start() + 1));
}
else {
b2 = new BigInteger("1");
}
b1 = b1.add(b2);
return b1.toString();
}
}
return "0";
}
便将每一原子项中的同类因子合并,之后应该在项内做排序,从而得出如上述规范化的式子,即a*x^b*sin(x)^c*cos(x)^d的形式,这里就省略排序代码。
将通过+-分隔的每一原子项按照如上规则处理好之后,可以进行存入Hashmap处理,处理方式如下:
设立Poly类,其中包含BigInteger参数三个,分别为b、c、d,即x,sin(x),cos(x)各自的指数(若不存在此因子则指数为0),那么可以将此三元组作为key值,将a,即系数作为value,形成一个新的Hashmap,形式为Hashmap<Poly, BigInteger>,可知,对每个相同形式的项,均可以用前述方法处理并合并为同类项。
对于三角函数化简公式,比较简单的有如下几种:
sin(x)^2 + cos(x)^2 = 1
1 - cos(x)^2 = sin(x)^2
1 - sin(x)^2 = cos(x)^2
进阶版的有如下形式:
sin(x)^4 + 2 * sin(x) ^2* cos(x)^2 + cos(x)^4 = 1
sin(x)^4 - cos(x)^4 = sin(x)^2 - cos(x)^2
......
事实上,若想比较好的化简,应该先将进阶版部分的三角函数进行化简(即降次,否则会导致需要重复使用基础版化简公式,导致TLE)
由于我们的存储方式,可以知道,对于进阶版化简部分,可以枚举出几个典型的公式,进行if-else判断(方法繁琐但不容易出错),将常见的进阶版公式化简之后,就可以愉快的开始基础版化简了。
· 而根据我们之前所讨论的Hashmap存储方法,可知两对三元组为<b1, c1, d2>、<b2, c2, d2>,若满足:
1.b1 == b2
2.(abs(c1 - c2) == 2 && d1 == d2) || (abs(d2 - d1) == 2 && c1 == c2)
或
3.b1 == b2
2.(c1 - c2 == 2 && d1 - d2 == -2) || (d2 - d1 == 2 && c1 - c2 == -2)
即可将含有基础版化简形式的部分项化简,若分别考虑两者系数a1, a2,则会保留下某一三元组的部分式子。而上述基础版化简的时候要记得用if-else判断为哪种形式,否则化简出来的式子会含有^0之类不应该存在的部分。
在化简的时候需要注意的是,在Hashmap存化简之后的项的时候,要用keycontains检测是否已经存在了项,不要将已有的项覆盖掉:)
最后处理按照第一次作业类似的方法(排序,正项提前等)即可将化简做到比较好的程度。
(三)第三次作业
具体请见作业博客,网址如下:
https://www.cnblogs.com/dxy1999/p/10585219.html
最后, 我想说,其实化简表达式并不完全是为了分数,而更应该从中学到如何将OO课程学的更好。试问,如果在化简的时候对于自己的类的概念不清晰,又怎能写出正确的代码呢?疯狂面向过程写代码,又会创造出多么长的代码呢?愿我们共勉。
简,你化不化,它就在那里
buaaoo_first_improvement的更多相关文章
随机推荐
- Codeforces 1095F Make It Connected(最小生成树)
题目链接:Make It Connected 题意:给定一张$n$个顶点(每个顶点有权值$a_i$)的无向图,和已连接的拥有边权$w_i$的$m$条边,顶点u和顶点v直接如果新建边,边权为$a_u+a ...
- java-最大连续子数组和(最大字段和)
1.题目要求 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],-,a[n],求该序列如a[i]+a[i+1]+-+a[j]的子段和的最大值.当所给的整数均为负数时定义子段和为0, ...
- DB(1):SQLAPI catch [Bind variable/parameter 'pay_acc_id' not found] !!!
SQLAPI catch [Bind variable/parameter 'pay_acc_id' not found] !!! 出现这种报错,先检查命令类后面的参数是否混淆(SACommand s ...
- Alertmanager 集群
Alertmanager 集群搭建 环境准备:2台主机 (centos 7) 192.168.31.151 192.168.31.144 1.安装部署 192.168.31.151 cd /usr/l ...
- Kubernetes之canal的网络策略(NetworkPolicy)
安装要求: 1.我们这里安装的是3.3的版本.kubernetes的要求: 支持的版本 1.10 1.11 1.12 2.CNI插件需要启用,Calico安装为CNI插件.必须通过传递--networ ...
- C语言面试题大汇总之华为面试题 Eddy整理
1.局部变量能否和全局变量重名? 答:能,局部会屏蔽全局.要用全局变量,需要使用"::" ;局部变量可以与全局变量同名,在函数内引用这个变量时,会用到同名的局部变量,而不会用到全局 ...
- js javascript 简易随机值穿插加解密【原】
适用场景 本方法适用于需要对敏感信息进行加密传输,但加解密要求又不高的场景,因为是前台的javascript加解密,所以其实还是能通过js代码分析出原始值来的. 如果您对信息极其敏感, 比例登录密码这 ...
- python之路(7)装饰器
前言 装饰器:为函数添加附属功能,本质为函数 原则:不修改被修饰函数的源代码 不修改被修饰函数的调用方式 装饰器=高阶函数+函数嵌套+闭包 使用场景演示 定义下面函数 def cal(l): res ...
- 【转】Redis学习笔记(五)如何用Redis实现分布式锁(2)—— 集群版
原文地址:http://bridgeforyou.cn/2018/09/02/Redis-Dsitributed-Lock-2/ 单机版实现的局限性 在上一篇文章中,我们讨论了Redis分布式锁的实现 ...
- mysql的The user specified as a definer (”@’%') does not exist 的解决办法
两种可能: 1.用户权限不够 赋给用户所有权限试试 mysql> grant all privileges on *.* to root@"%" identified by ...