[Apio2012]dispatching

Description

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。

1 ≤N ≤ 100,000 忍者的个数;
1 ≤M ≤ 1,000,000,000 薪水总预算;

0 ≤Bi < i 忍者的上级的编号;
1 ≤Ci ≤ M 忍者的薪水;
1 ≤Li ≤ 1,000,000,000 忍者的领导力水平。

Input

从标准输入读入数据。

第一行包含两个整数 N和 M,其中 N表示忍者的个数,M表示薪水的总预算。

接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0,并且每一个忍者的老板的编号一定小于自己的编号 Bi < i。

Output

输出一个数,表示在预算内顾客的满意度的最大值。

Sample Input

5 4

0 3 3

1 3 5

2 2 2

1 2 4

2 3 1

Sample Output

6

HINT

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算 4。因为派遣了 2 个忍者并且管理者的领导力为 3,

用户的满意度为 2 ,是可以得到的用户满意度的最大值。

solution:

先来一个暴力,枚举那个忍者为管理者,此时领导力已经固定了,要使满意度最大,就要让人数尽可能多,在可以选择的忍者中按薪金从小到大依次选取,选到不能选为止。这个贪心显然是正确的,但时间复杂度O(n² lg n),会TLE。
优化!
很明显,暴力的方法中有着大量的重复计算。一些忍者被一次又一次的排序,太浪费时间了。怎么办?由于管理员只能领导他的手下,于是容易想到在树上自底向上合并子树。归并?可是树的形态任意,容易MLE。这样子很麻烦,反过来想一想。如果取得太多了,那应该踢掉最大的,然后次大的,依次到钱够用为止。每次删除最大的,用大根堆就可以实现。然后要把若干棵子树合并,从大到小踢元素,可是堆不可以合并,那就用可合并堆吧,左偏树。于是,就AC了。
注意细节,由于考虑一棵子树时,根可能已经被踢了,所以一定要把堆的根记下来,不要偷懒,否则就会WA的很惨。不过father确实没什么用,可以删掉,但是考虑到模板的完整性,还是保留了,反正写了也没坏处。还有,别忘记开long long!

code:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll ans,c[],num[],sum[],b[],key[],m;
int n,a[],l[],r[],fa[],dis[],root[];
int get(int x){
if(x==fa[x])
return x;
return get(fa[x]);
}
int merge(int a,int b){
if(!a)
return b;
if(!b)
return a;
if(key[a]<key[b])
swap(a,b);
r[a]=merge(r[a],b);
fa[r[a]]=a;
if(dis[r[a]]>dis[l[a]])
swap(r[a],l[a]);
if(r[a])
dis[a]=dis[r[a]]+;
else
dis[a]=;
return a;
}
int pop(int x){
int L=l[x],R=r[x];
fa[R]=R;
fa[L]=L;
l[x]=r[x]=;
return merge(L,R);
}
int main(){
scanf("%d%lld",&n,&m);
for(int i=;i<=n;i++){
scanf("%d%lld%lld",&a[i],&b[i],&c[i]);
key[i]=b[i];
l[i]=r[i]=;
fa[i]=i;
num[i]=;
sum[i]=b[i];
dis[i]=;
root[i]=i;
}
for(int i=n;i>=;i--){
while(sum[i]>m){
int x=root[i];
sum[i]-=key[x];
num[i]--;
root[i]=pop(x);
}
ans=max(ans,num[i]*c[i]);
if(a[i]){
root[a[i]]=merge(root[i],root[a[i]]);
num[a[i]]+=num[i];
sum[a[i]]+=sum[i];
}
}
printf("%lld\n",ans);
return ;
}

bzoj2809 [Apio2012]dispatching(左偏树)的更多相关文章

  1. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  2. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

  3. [Apio2012]dispatching 左偏树

    题目描述 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增 ...

  4. [Apio2012]dispatching 左偏树做法

    http://codevs.cn/problem/1763/ 维护子树大根堆,当子树薪水和>m时,删除最贵的点 #include<cstdio> #include<iostre ...

  5. APIO2012 派遣dispatching | 左偏树

    题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...

  6. BZOJ2809 dispatching(左偏树)

    在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增强忍者们的 ...

  7. [APIO2012]派遣 左偏树

    P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...

  8. 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]

    题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...

  9. 【bzoj2809】派遣 (左偏树)

    传送门 题目分析 每个节点都是一颗(大根堆)左偏树,先按bfs序存入数组,然后倒着从底层开始:如果当前节点的子树sum > m 那么就把根节点删去,然后统计更新答案,并将这棵树和父节点合并. c ...

随机推荐

  1. 2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017)

    A. Airport Coffee 设$f_i$表示考虑前$i$个咖啡厅,且在$i$处买咖啡的最小时间,通过单调队列优化转移. 时间复杂度$O(n)$. #include<cstdio> ...

  2. React(六)Props属性

    state 和 props 主要的区别在于 props 是不可变的,而 state 可以根据与用户交互来改变.这就是为什么有些容器组件需要定义 state 来更新和修改数据. 而子组件只能通过 pro ...

  3. 51nod 1617 奇偶数组

    传送门 回来看一眼51nod,发现自己掉到rank4了,赶紧切道题回rank3. 一眼不会做,这种东西应该慢慢找规律吧……然后看到数据范围其实比较小,应该是单次log的,那是不是可以分治啊. #inc ...

  4. Java 中关于基本数字类型的注意事项

    局部变量需初始化才能访问 public void test() { float n; n = n + 1; } 窄化导致自增异常 short i = 3; i += 1; // 不提升 short i ...

  5. Exception in thread "main" java.lang.IllegalStateException: Failed to read Class-Path attribute from manifest of jar file:

    表示jar所在位置文件夾中沒有下載好,將目標目錄刪除,重新maven下就好了

  6. C语言企业级的需要学习的知识

    建立正确程序运行内存的布局图(印象图) 内存四区模型图: 函数调用模型图: 数据类型的本质:固定大小内存块的别名 对于数组变量b[10]; b+1,与&b+1结果不一样: b代表的是数组首元素 ...

  7. 一个FORK的面试题(转)

    https://coolshell.cn/articles/7965.html https://coolshell.cn/articles/945.html

  8. window10, java环境配置完后在cmd,输入java成功了,但为什么输入javac就失败了

    一.Path的配置:按一般的网上教程,配置时都会是复制这段[%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin;] win10的都分开显示,还是比较直观,但由于编辑器的原因,所有变 ...

  9. Ultimate Guide to WeChat for Business 2019

    Ultimate Guide to WeChat for Business 2019 By Iaroslav Kudritskiy (source :https://rocketbots.io/blo ...

  10. sql的基本语句

    SQL中的inner join, left join, right join, full join 创建两个测试表并且输入相关值create table test_a(aid int,aNum var ...