EECS 649 Introduction to Artificial Intelligence
Exam
Electronic Blackboard Submission Due: April 24, 2019 @ 9PM
Paper Copy Due: April 25, 2019 @ 4PM
200 Points
Directions: You must read and follow these directions carefully. This is a 3 hour open notes,
open internet exam. You may not collaborate or communicate with another student in the class
or outside the class regarding the exam from 6pm, 4/24/2019 to 5 AM, 4/25/2019.
In order to discourage cheating, if you can prove another student was asking you for help or
discussing the exam with you prior to you or them submitting the exam and are the first to report
it, you will receive 50 extra points (not to exceed 200 points total) and they will have 50 points
subtracted from their total). The person that attempted to cheat first will not be able to gain any
points for reporting another cheating student but the reported cheating student will be deducted
50 points. Any group attempt to maximize total or individual gains from any type of cheating
will all receive zero points for their exam grade. Any detected cheating or plagiarism will result
in a zero points exam grade.
There will be 5% grade reduction if the exam is turned in electronically after midnight and an
additional 5% grade reduction if turned in electronically after 2 AM. Exams will not be given
ANY credit if submitted electronically after 5AM, April 25, 2019.
No questions will be answered by the instructor during the exam. If you run into any issues, do
your best to describe your assumptions or any discrepancies and solve the problem.
The exam answers that are not part of the programming portion should be submitted as a PDF
file. Clearly label the problem numbers, letters, and answers. Questions 1-4 should be typed
(you may include diagrams if you wish). Question 5 can be submitted as a scanned PDF of a
handwritten answer since it involves “drawing” some diagrams. The programming portion
(Question 4) should be submitted as a zip file containing all of the requested data and code.
Make sure that your name is included at the top of each submitted page or file.
TURN IN A PAPER COPY OF YOUR EXAM ANSWERS IDENTICAL TO YOUR
ELECTRONICALLY SUBMITTED ANSWERS (MINUS THE DATA FILES) TO THE EECS
OFFICE IN EATON 2001 BY 4PM ON APRIL 25, 2019. NO LATE PAPER COPIES WILL
BE ACCEPTED.

代写EECS 649作业、代做Artificial Intelligence作业、R课程设计作业代写、代做R编程作业
First Name: __________________________ Last Name: ___________________________
2
1. [60 points] General Artificial Intelligence: Write a coherent and well organized one to two
page essay in paragraph form that explains what AI is, what it is not, and what are its
limitations or dangers. Be sure to include, explain, and clearly identify (e.g. number) the
following concepts: the history of AI, the present status of AI, intelligent agents and their
various architectures, problem solving as search, learning, environment characteristics of an
intelligent agent, ethics, real-world examples, and list some of the subfields of AI. The real
world examples you provide should be from the in-class guest lectures. Be sure to give your
essay a title and adhere to spelling and grammar rules.
2. [20 points] Logistic regression and deep learning: Briefly compare and contrast logistic
regression and deep learning. Be sure to give definitions of each. Be sure to adhere to
spelling and grammar rules.
3. [20 points] Reinforcement learning: Briefly explain what reinforcement learning is and how
does it relate to other methods of learning. Be sure to adhere to spelling and grammar rules.
4. [80 points] Programming Machine Learning: Write a program in the language of your choice
(e.g. R) to create a supervised learning model to predict the housing prices given the data
provided on Blackboard (housetrain.csv, housetest.csv, and housedata_description.txt).
Prepare the training set and test set to include only the following features: year and month of
sale, lot square footage, and number of bedrooms.
housetrain.csv - the training set
housetest.csv - the test set
housedata_description.txt - full description of each column
a. What is the particular supervised learning method you are using and why did you
choose it over other methods?
b. What did you do with the data to prepare it for processing? [Rename your prepped
data to housetrain_prepped.csv and housetest_prepped.csv]
c. How did you go about training your machine learning model (i.e. explain the stepby-step
process you used)?
d. What are the set of features and the specific coefficient values that give you the
best results?
e. What is your R2 value (i.e. r-squared value) and what does it mean?
f. What is your RMSE value between the logarithm of the predicted value and the
logarithm of the observed sales price. (Taking logs means that errors in predicting
expensive houses and cheap houses will affect the result equally.)
First Name: __________________________ Last Name: ___________________________
3
g. What is the predicted sales price values for id 1625 in the housetest.csv file ? To
find the feature, or predictor, values for this problem, open the housetest.csv file
and look at the row that has id 1625. Use only the year and month of sale, lot
square footage, and number of bedrooms in your learning model from that
example.
h. Graduate students only: Create another learning model and determine the set of
features that provides the best result. List the features you identify and the
coefficients . State the R2 , RMSE values and compare them with the first
learning model you created. Graduate student with the best performing model
wins “the prize.” Undergraduate students may do this portion for extra credit.
i. Graduate students only: Write down the predicted sales prices for id 1625 in
test.csv using your new learning model from part h . Undergraduate students
may do this portion for extra credit.
j. Be sure to upload your R code and data to blackboard in a zip file labeled
<your name>_machinelearningcode.zip
Your R code and data should produce and display the results you describe in “a”
through “i” above.
First Name: __________________________ Last Name: ___________________________

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com

微信:codinghelp

EECS 649 Introduction to Artificial Intelligence的更多相关文章

  1. (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers

    A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...

  2. ARTIFICIAL INTELLIGENCE FOR GAMES (Ian Millington / John Funge 著)

    相关网站:http://www.ai4g.com PART I AI AND GAMESCHAPTER1 INTRODUCTIONCHAPTER2 GAME AIPART II TECHNIQUESC ...

  3. Artificial intelligence(AI)

    ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...

  4. (转) Artificial intelligence, revealed

    Artificial intelligence, revealed Yann LeCunJoaquin Quiñonero Candela It's 8:00 am on a Tuesday morn ...

  5. Artificial Intelligence Language

    Artificial Intelligence Language Objective We know, a true AI program should have ability to underst ...

  6. 拼写纠正 Artificial Intelligence: A Modern Approach

    Artificial Intelligence: A Modern Approach http://mindhacks.cn/2008/09/21/the-magical-bayesian-metho ...

  7. Artificial Intelligence Research Methodologies 人工智能研究方法

    Computer Science An Overview _J. Glenn Brookshear _11th Edition To appreciate the field of artificia ...

  8. UVa 537 Artificial Intelligence?

    题目大意:输入一个字符串,根据物理公式P=U*I,已知其中两个量,求第三个量,结果保留两位小数.   Artificial Intelligence?  Physics teachers in hig ...

  9. PAIP: Paradigms of Artificial Intelligence Programming

    PAIP: Paradigms of Artificial Intelligence Programming PAIP: Paradigms of Artificial Intelligence Pr ...

随机推荐

  1. yum配置163源

    CentOS7 配置163 yum源 1)下载repo文件 wget http://mirrors.163.com/.help/CentOS7-Base-163.repo 2)备份并替换系统的repo ...

  2. python3 文件读写操作中的文件指针seek()使用

    python中可以使用seek()移动文件指针到指定位置,然后读/写.通常配合 r+ .w+.a+ 模式,在此三种模式下,seek指针移动只能从头开始移动,即seek(x,0) . 模式 默认 写方式 ...

  3. shell 爬取图片下载到本地

    #!/bin/bash #ddmm // #if [ -z $string ] 如果string 为空 #-z STRING the length of STRING is zero read -p ...

  4. 通过使用Web Workers,Web应用程序可以在独立于主线程的后台线程中,运行一个脚本操作。这样做的好处是可以在独立线程中执行费时的处理任务,从而允许主线程(通常是UI线程)不会因此被阻塞/放慢。

    Web Workers API - Web API 接口参考 | MDNhttps://developer.mozilla.org/zh-CN/docs/Web/API/Web_Workers_API ...

  5. MGR

    单主模式 参数修改 server_id=1 gtid_mode=ON enforce_gtid_consistency=ON binlog_checksum=NONE log_bin=binlog l ...

  6. 2018-2019-2 网络对抗技术 20165317 Exp2 后门原理与实践

    2018-2019-2 网络对抗技术 20165317 Exp2 后门原理与实践 基础问题回答 例举你能想到的一个后门进入到你系统中的可能方式? 下载免费应用的时候会有绑定木马. 浏览某些网页时会有内 ...

  7. Vue.js中集成summernote

    首先引用summernote样式及js: <!--summernote css --> <link href="${ctxPath}/static/css/summerno ...

  8. OC闪屏页尺寸

    1242*2688  828*1972 1125x2436 1242×2208  750×1334 640×960   640×1136 320x480    640x960  640x1136

  9. Window Server配置Flask

    1.安装了Chrome 2.安装git 3.创建SSH key:ssh-keygen -t rsa -C "youremail@example.com" 4.安装notepad++ ...

  10. 来测试下你的Java编程能力

    上篇整理了下后面准备更系统化写的Java编程进阶的思路,如果仅看里面的词,很多同学会觉得都懂,但我真心觉得没有多少人是真懂的,所以简单的想了一些题目,感兴趣的同学们可以来做做看,看看自己的Java编程 ...