一、简介

二、opencv中的SURF算法接口

三、特征点匹配方法

四、代码

1.特征点提取

#include "opencv2/opencv.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include <vector>
#include<iostream>
using namespace std;
using namespace cv; void main()
{
Mat srcImg1 = imread("E://1.jpg");
Mat srcImg2 = imread("E://2.jpg");
//定义SURF特征检测类对象
SurfFeatureDetector surfDetector();//SIFT有默认值,SURF没有默认值,需要赋初值 hessianThreshold
//定义KeyPoint变量
vector<KeyPoint>keyPoints1;
vector<KeyPoint>keyPoints2;
//特征点检测
surfDetector.detect(srcImg1, keyPoints1);
surfDetector.detect(srcImg2, keyPoints2);
//绘制特征点(关键点)
Mat feature_pic1, feature_pic2;
drawKeypoints(srcImg1, keyPoints1, feature_pic1, Scalar(,,));
//drawKeypoints(srcImg2, keyPoints2, feature_pic2, Scalar::all(-1));
//drawKeypoints(srcImg1, keyPoints1, feature_pic1, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
drawKeypoints(srcImg2, keyPoints2, feature_pic2, Scalar::all(-), DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
//显示原图
imshow("src1", srcImg1);
imshow("src2", srcImg2);
//显示结果
imshow("feature1", feature_pic1);
imshow("feature2", feature_pic2); waitKey();
}

2.暴力匹配(尽量避免使用“nth_element前多少个”筛选)

#include "opencv2/opencv.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/legacy/legacy.hpp>
#include <vector>
#include<iostream>
using namespace std;
using namespace cv; void main()
{
Mat srcImg1 = imread("E://11.jpg");
Mat srcImg2 = imread("E://22.jpg");
//定义SURF特征检测类对象
SurfFeatureDetector surfDetector(); //HessianThreshold //定义KeyPoint变量
vector<KeyPoint>keyPoints1;
vector<KeyPoint>keyPoints2;
//特征点检测
surfDetector.detect(srcImg1, keyPoints1);
surfDetector.detect(srcImg2, keyPoints2);
//绘制特征点(关键点)
Mat feature_pic1, feature_pic2;
drawKeypoints(srcImg1, keyPoints1, feature_pic1, Scalar::all(-));
drawKeypoints(srcImg2, keyPoints2, feature_pic2, Scalar::all(-));
//显示原图
imshow("src1", srcImg1);
imshow("src2", srcImg2);
//显示结果
imshow("feature1", feature_pic1);
imshow("feature2", feature_pic2); //计算特征点描述符 / 特征向量提取
SurfDescriptorExtractor descriptor;
Mat description1;
descriptor.compute(srcImg1, keyPoints1, description1);
Mat description2;
descriptor.compute(srcImg2, keyPoints2, description2);
cout<<description1.cols<<endl;
cout<<description1.rows<<endl; //进行BFMatch暴力匹配
BruteForceMatcher<L2<float>>matcher; //实例化暴力匹配器
vector<DMatch>matches; //定义匹配结果变量
matcher.match(description1, description2, matches); //实现描述符之间的匹配 //计算向量距离的最大值与最小值
double max_dist=, min_dist=;
for(int i=; i<description1.rows; i++)
{
if(matches.at(i).distance > max_dist)
max_dist = matches[i].distance;
if(matches.at(i).distance < min_dist)
min_dist = matches[i].distance;
}
cout<<"min_distance="<<min_dist<<endl;
cout<<"max_distance="<<max_dist<<endl; //匹配结果筛选
vector<DMatch>good_matches;
for(int i=; i<matches.size(); i++)
{
if(matches[i].distance < *min_dist)
good_matches.push_back(matches[i]);
} Mat result;
//drawMatches(srcImg1, keyPoints1, srcImg2, keyPoints2, matches, result, Scalar::all(-1), Scalar::all(-1));
drawMatches(srcImg1, keyPoints1, srcImg2, keyPoints2, good_matches, result, Scalar(, , ), Scalar::all(-));
imshow("Match_Result", result); waitKey();
}

因为surf检测到的角点比较少,所以不适合做小目标匹配。

同样代码,使用sift作对比

3.FlannBasedMatcher匹配

   //BruteForceMatcher<L2<float>>matcher;    //实例化暴力匹配器
FlannBasedMatcher matcher; //实例化FLANN匹配器
vector<DMatch>matches; //定义匹配结果变量
matcher.match(description1, description2, matches); //实现描述符之间的匹配

其余代码相同

opencv学习之路(35)、SURF特征点提取与匹配(三)的更多相关文章

  1. OpenCV成长之路(9):特征点检测与图像匹配

    特征点又称兴趣点.关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像.进行图像配准.进行3D重建等.本文主要介绍OpenCV中几种定位与表示关键点的函数. 一.Harris ...

  2. Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练

    在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资 ...

  3. opencv学习之路(34)、SIFT特征匹配(二)

    一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree ...

  4. opencv学习之路(33)、SIFT特征点提取(一)

    一.简介 二.OpenCV中的SIFT算法接口 #include "opencv2/opencv.hpp" #include <opencv2/nonfree/nonfree ...

  5. opencv学习之路(19)、直方图

    一.概述 二.一维灰度直方图 #include "opencv2/opencv.hpp" #include<iostream> using namespace cv; ...

  6. opencv学习之路(41)、人脸识别

    一.人脸检测并采集个人图像 //take_photo.cpp #include<opencv2/opencv.hpp> using namespace cv; using namespac ...

  7. opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH

    一.人脸识别算法之特征脸方法(Eigenface) 1.原理介绍及数据收集 特征脸方法主要是基于PCA降维实现. 详细介绍和主要思想可以参考 http://blog.csdn.net/u0100066 ...

  8. opencv学习之路(20)、直方图应用

    一.直方图均衡化--equalizeHist() #include "opencv2/opencv.hpp" using namespace cv; void main() { 6 ...

  9. opencv学习之路(18)、霍夫变换

    一.简介 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确地检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough) ...

随机推荐

  1. JVM内存问题分析

    JVM运行时数据区: 1.方法区:类信息(类名,访问修饰符.字段描述.方法 描述等).常量.静态变量.即时编译后的class文件等.在GC时用永久代来实现方法区 2.运行时常量池:是方法区的一部分,存 ...

  2. 8、jeecg 笔记之 自定义word 模板导出(一)

    1.前言 jeecg 中已经自带 word 的导出导出功能,其所使用的也是 easypoi,尽管所导出的 word 能满足大部分需求, 但总是有需要用到自定义 word导出模板,下文所用到的皆是 ea ...

  3. div 拖拽

    html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  4. BIO, NIO 和 Epoll (转载)

    很好的文章 https://eklitzke.org/blocking-io-nonblocking-io-and-epoll

  5. HDD ,SSD和PCIE SSD性能测试

      PCIE SSD   * MB/s = 1,000,000 bytes/s [SATA/600 = 600,000,000 bytes/s] * KB = 1000 bytes, KiB = 10 ...

  6. 玩转PIL >>> 玩转photo

    前:1.使用图片放在文件最后,需要的请自行下载 2.运行环境win10家庭版,已经安装好pillow库 一.学习总结 PIL库支持图像的储存,显示和处理,几乎能处理所有的图片格式,可以完成对图像的缩放 ...

  7. 3.1.4 Spring的事务管理

    四.Spring的事务管理 事务原本是数据库中的概念, 在Dao层. 但一般情况下, 需要将事务提升到 业务层, 即Service层. 这样做是为了 能够使用事务的特性来管理具体的业务. 1. Spr ...

  8. tp5命令行

    手册->命令行->自定义命令行 1.第一步,配置command.php文件 2.第二步,建立命令类文件 注意:该文件中代码,从文档中粘,以防写错. 名字啥的都不用改,就改命名空间 和 定义 ...

  9. U盘安装Windows原版系统(安装方式有很多,我讲我的安装方式)

    我陈某人,也是安装过至少200部台式或笔记本的人物. 低调,低调,开个玩笑~ 安装方式有很多,我讲我的安装方式,欢迎收藏. 1.下载准备文件下载.iso原版系统镜像文件http://msdn.itel ...

  10. db2一、查询

    1.查询单条数据( fetch 放在最后) select * from x where 1=1 order by id fetch first 1 rows only