[PKUSC2018]星际穿越(倍增)
题意:n个点的图,点i和[l[i],i)的所有点连双向边。每次询问(l,r,x)表示x到[l,r]的所有点的最短路径长度和。
首先这题显然可以线段树优化建图,但是需要比较好的常数才能通过45分,还需要发掘性质。
先不考虑往右走的情况,对于一个点x,每个点i与x的最短距离一定形成一个个连续区间,即:设f[i][j]表示i走j步能到的最左的点,则$f[i][j+1]=\min\limits_{k=f[i][j]}^{i-1}l[k]$。所以只要往前扫一遍就能求出f[i]数组。
接着考虑往右走的情况,可以证明,一个点最多只需要往右走一次,所以只需要往后扫一遍就能求出新的f[i]数组。这样我们记录一个前缀和就可以在$O(n^2)$复杂度内解决问题。
可以发现f[i][j]这个数组显然是可以倍增优化的,直接套上RMQ类似的模板即可。
这里有一个简化代码的方法,就是f[i][j]改为表示[i..n]的所有点走$2^j$步之后能到达的最靠前的点,这样就可以直接倍增转移了。但是这样就要判断i最后是否需要先往右走一步,这里又有一个小技巧:先强制往左走一步,剩下的直接处理即可。
总码长不到1k。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,Q,l,r,x,L[N],to[][N];
ll sm[][N]; int gcd(int a,int b){ return b ? gcd(b,a%b) : a; } ll calc(int l,int r){
if (L[r]<=l) return r-l;
ll ans=r-L[r]; r=L[r]; int tot=;
for (int i=; ~i; i--)
if (to[i][r]>l) ans+=sm[i][r]+tot*(r-to[i][r]),r=to[i][r],tot+=<<i;
return ans+(r-l)*(tot+);
} int main(){
freopen("pkua.in","r",stdin);
freopen("pkua.out","w",stdout);
scanf("%d",&n); L[]=;
rep(i,,n) scanf("%d",&L[i]);
to[][n]=L[n]; sm[][n]=n-L[n];
for (int i=n-; i; i--) to[][i]=min(to[][i+],L[i]),sm[][i]=i-to[][i];
rep(i,,) rep(j,,n) if (to[i-][j]){
to[i][j]=to[i-][to[i-][j]];
sm[i][j]=sm[i-][j]+sm[i-][to[i-][j]]+(to[i-][j]-to[i][j])*(1ll<<(i-));
}
for (scanf("%d",&Q); Q--; ){
scanf("%d%d%d",&l,&r,&x);
ll a=calc(l,x)-calc(r+,x),b=r-l+; int d=gcd(a%b,b);
printf("%lld/%lld\n",a/d,b/d);
}
return ;
}
[PKUSC2018]星际穿越(倍增)的更多相关文章
- [Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增) 题面 n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短 ...
- LOJ.6435.[PKUSC2018]星际穿越(倍增)
LOJ BZOJ 参考这儿qwq. 首先询问都是求,向左走的最短路. \(f[i][j]\)表示从\(i\)走到\(j\)最少需要多少步.表示这样只会\(O(n^2\log n)\)的= =但是感觉能 ...
- [PKUSC2018]星际穿越
[PKUSC2018]星际穿越 题目大意: 有一排编号为\(1\sim n\)的\(n(n\le3\times10^5)\)个点,第\(i(i\ge 2)\)个点与\([l_i,i-1]\)之间所有点 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- BZOJ5371[Pkusc2018]星际穿越——可持久化线段树+DP
题目描述 有n个星球,它们的编号是1到n,它们坐落在同一个星系内,这个星系可以抽象为一条数轴,每个星球都是数轴上的一个点, 特别地,编号为i的星球的坐标是i. 一开始,由于科技上的原因,这n个星球的居 ...
- 【洛谷5465】[PKUSC2018] 星际穿越(倍增)
点此看题面 大致题意: 给定\(l_{2\sim n}\),其中\(l_i\)表示\([l_i,i-1]\)的所有点与\(i\)之间存在一条长度为\(1\)的双向路径.每次询问给出\(l,r,x\), ...
- LOJ6435 PKUSC2018 星际穿越
这个题吧当时在考场只得了45分 然后70分的性质都分析到了 不知道为啥就是写萎蛋了 哎 当时还是too young too simple 看了一下julao们的博客这个题有两种做法 一个是比较费脑子的 ...
- 2019.03.09 bzoj5371: [Pkusc2018]星际穿越(主席树)
传送门 题意简述: 给一个序列,对于第iii个位置,它跟[limi,i−1][lim_i,i-1][limi,i−1]这些位置都存在一条长度为111的无向边. 称dist(u,v)dist(u,v) ...
- 题解 洛谷 P5465 【[PKUSC2018]星际穿越】
首先考虑题目的性质,发现点向区间连的边为双向边,所以也就可以从一个点向右跳到区间包含该点的点,如图所示: 但事实上向后跳其实是不优的,可以有更好的方法来节省花费: 因此我们发现一个点跳到其前一个区间的 ...
随机推荐
- Java EE 开发环境搭建
1 Windows 1.1 JDK 下载: 下载地址:https://developer.oracle.com/java 安装文件:jdk-8u201-windows-x64.exe JDK 并不是越 ...
- Gym - 101350F Monkeying Around(线段树+树状数组)
When the monkey professor leaves his class for a short time, all the monkeys go bananas. N monkeys a ...
- Vue(项目踩坑)_解决vue中axios请求跨域的问题
一.前言 今天在做项目的时候发现axios不能请求跨域接口 二.主要内容 1.之前直接用get方式请求聚合数据里的接口报错如下 2.当前请求的代码 3.解决方法 (1)在项目目录中依次找到:confi ...
- jenkins拉源码设置参数化构建选项为tagname
安装插件:https://mirrors.tuna.tsinghua.edu.cn/jenkins/plugins/jquery/1.12.4-0/jquery.hpi 安装插件:https://mi ...
- kubernetes云平台管理实战: 滚动升级秒级回滚(六)
一.nginx保证有两个版本 1.查看当前容器运行nginx版本 [root@k8s-master ~]# kubectl get pod -o wide NAME READY STATUS REST ...
- 查找命令which、whereis、locate
1.find 最常用和最强大的查找命令.它能做到实时查找,精确查找,但速度慢. find的使用格式如下: $ find [指定目录] [指定条件] [指定动作] 指定目录:是指所要搜索的目录和其子 ...
- 使用Maven插件构建Spring Boot应用程序镜像
使用Maven插件构建Spring Boot应用程序的Docker镜像. 环境准备 1.Linux系统 2.安装JDK,Maven 3.安装Docker 应用实践 1.在应用程序根目录下添加Docke ...
- [译]Ocelot - Request Aggregation
原文 Aggregate ReRoutes用来组合多个ReRoutes,将它们的响应结果映射到一个响应中返回给客户端. 为了使用Aggregate ReRoutes,你必须像下面的ocelot.jso ...
- 【Java编程思想笔记】反射
文章参考:学习网站 how2java.cn 参考博客:(敬业的小码哥)https://blog.csdn.net/sinat_38259539/article/details/71799078 (青色 ...
- Android Fragment 生命周期及其正确使用(建议使用自定义View替换Fragment)
使用Fragment 官方例子中显示: 例如:一个学生Fragment,需要传入studentId,进行http请求显示,那么setArguments后防止杀掉Fragment后,参数为0,显示不了数 ...