题目描述

在网友的国度中共有 \(n\) 种不同面额的货币,第 \(i\) 种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 \(n\)、面额数组为 \(a[1..n]\) 的货币系统记作 \((n,a)\)。

在一个完善的货币系统中,每一个非负整数的金额 \(x\) 都应该可以被表示出,即对每一个非负整数 \(x\),都存在 \(n\) 个非负整数 \(t[i]\) 满足 \(a[i] \times t[i]\) 的和为 \(x\)。然而, 在网友的国度中,货币系统可能是不完善的,即可能存在金额 xx不能被该货币系统表示出。例如在货币系统 \(n=3, a=[2,5,9]\) 中,金额 \(1,3\) 就无法被表示出来。

两个货币系统 \((n,a)\) 和 \((m,b)\) 是等价的,当且仅当对于任意非负整数 \(x\),它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。

现在网友们打算简化一下货币系统。他们希望找到一个货币系统 \((m,b)\),满足 \((m,b)\) 与原来的货币系统 \((n,a)\) 等价,且 \(m\) 尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的 \(m\)。

输入输出格式

输入文件的第一行包含一个整数 \(T\),表示数据的组数。

接下来按照如下格式分别给出 TT 组数据。 每组数据的第一行包含一个正整数 \(n\)。接下来一行包含 \(n\) 个由空格隔开的正整数 \(a[i]\)。

输出文件共有 \(T\) 行,对于每组数据,输出一行一个正整数,表示所有与 \((n,a)\) 等价的货币系统 \((m,b)\) 中,最小的 \(m\) 。

输入输出样例

输入样例1:

2
4
3 19 10 6
5
11 29 13 19 17

输出样例1:

2
5

说明

在第一组数据中,货币系统 \((2, [3,10])\) 和给出的货币系统 \((n, a)\) 等价,并可以验证不存在 \(m < 2\) 的等价的货币系统,因此答案为 \(2\) 。 在第二组数据中,可以验证不存在 \(m < n\) 的等价的货币系统,因此答案为 \(5\) 。

【数据范围与约定】

对于 \(100\%\) 的数据,满足 \(1 ≤ T ≤ 20, n,a[i] ≥ 1\)

Solution:

简略题意:给定一个集合 \(A\) 让你找出一个集合 \(B\) 使得 \(A\) 中的所有元素都能被 \(B\) 中的一个和多个元素表示出来 \(,\) 要求 \(B\) 的元素尽量少 \(,\) 求 \(B\) 中最少的元素个数

先排个序 \(,\) 一个数字一定只能由比它本身小的数字通过累加得到 \(,\) 枚举 \(A\) 中的所有元素 \(,\) 然后用判定性完全背包来确定哪一个数字能被表示 \(,\) 每有一个数字能被表示 \(,\) 就把原先等于 \(n\) 的 \(ans--\) 最后输出 \(ans\) 就完了

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio> const int N = 1e2 + 10 ;
const int M = 2e4 + 5e3 + 5 ; int T , a[N] ;
int cnt , n ;
int f[M] ; int main(){
scanf ("%d" , & T ) ;
while ( T -- ){
scanf ("%d" , & n ) ; memset ( f , 0 , sizeof ( f ) ) ;
for (int i = 1 ; i <= n ; ++ i) scanf ("%d" , & a[i]) ;
std::sort ( a + 1 , a + n + 1 ) ; f[0] = 1 ; cnt = n ;// 0 显然可以被任何集合表示
for (int i = 1 ; i <= n ; ++ i){
if ( f[a[i]] ) { -- cnt ; continue ; }
for (int j = a[i] ; j <= a[n] ; ++ j)
f[j] = f[j] | f[j-a[i]] ; //如果 j-a[i] 能被表示,那么显然j也能被表示
}
printf ("%d\n" , cnt ) ;
}
system ("pause") ; return 0 ;
}

NOIP2018Day1T2 货币系统的更多相关文章

  1. 洛谷P1474 货币系统 Money Systems

    P1474 货币系统 Money Systems 250通过 553提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 母牛们不但创 ...

  2. 【USACO 2.3.4】货币系统

    [描述] 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...

  3. 洛谷 P5020 货币系统

    题目描述 在网友的国度中共有$ n $种不同面额的货币,第 i种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为\(n\).面额数组为 \(a[1..n]\ ...

  4. BZOJ 4265 货币系统

    今天比赛的时候做到的.题解写得很简单,但是感觉对于我这种蒟蒻还是很有思考的价值的. 题面(由于题面很短,就不概括了):小Q当上了新的宇宙大总统,他现在准备重新设计一套货币系统. 这个货币系统要求一共有 ...

  5. luogu5020 [NOIp2018]货币系统 (完全背包)

    我那个新的货币系统,就是把原来的货币系统中能被其他数表示的数删掉 那我就算有多少数能被别的数表示,那肯定是要被比它小的表示 于是排个序做完全背包就好了 但是我太zz不会完全背包,然后写了个bitset ...

  6. [NOIp2018提高组]货币系统

    [NOIp2018提高组]货币系统 题目大意: 有\(n(n\le100)\)种不同的货币,每种货币的面额为\([1,25000]\)之间的一个整数.若两种货币系统能够组合出来的数是相同的的,那我们就 ...

  7. P1474 货币系统 Money Systems(完全背包)(大水题)

    题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...

  8. 洛谷 P1474 货币系统 Money Systems(经典)【完全背包】+【恰好装满的最大方案数量】

    题目链接:https://www.luogu.org/problemnew/show/P1474 题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对 ...

  9. P1474 货币系统 Money Systems

    题目描述 母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,5,10,20 或 25,50, 和 100的单 ...

随机推荐

  1. ADC获取滑块的值(8通道)

    #include "TgcConfig.h"#include "my_usb.h" /************************************* ...

  2. Html,CSS和盒子

    Html指超文本标记语言(HyperText Markup Language)是一种用于创建网页的标准标记语言. CSS 指层叠样式表 (Cascading Style Sheets),样式定义如何显 ...

  3. 「Algospot」量化QUANTIZE

    一道不难的DP题,主要是为了总结这类最优化题的思路:同时还学到了一个新操作 传送门:$>here<$ 题意 给出一个长度为$N$的序列,要求最多使用s个数字进行量化(有损压缩),即代替原数 ...

  4. Linux keepalived+lvs实现高可用负载均衡

    LVS的具有强大的负载均衡功能,但是它缺少对负载层节点(DS)的健康状态检测功能,也不能对后端服务(RS)进行健康状态检测:keepalived是专门用来监控高可用集群架构的中各服务的节点状态,如果某 ...

  5. python第十一天

    今日内容 1. 函数的参数 2. 函数对象 -- 函数名  * * * *重点! 3. 函数 的嵌套调用 1. 形参与实参: 函数介绍: 1.1  函数为什么要有参数: 因为内部的函数体需要外部的数据 ...

  6. Python与微信——itchat包

    目录 itchat itchat 一安装itchat pip install itchat pip install echarts-python 二登陆并向文件传输助手发消息 import itcha ...

  7. Nginx 反向代理 负载均衡 虚拟主机

    Nginx 反向代理 负载均衡 虚拟主机配置 通过本章你将学会利用Nginx配置多台虚拟主机,清楚代理服务器的作用,区分正向代理和反向代理的区别,搭建使用Nginx反向搭理和负载均衡,了解Nginx常 ...

  8. idea创建springboot Web项目

    一.File —— New —— Project 二.next 三.选择你要的骨架,然后 next.个人觉的这些不用选,因为就是帮你建了几个文件夹,导入了几个jar包依赖而已. 四.Finish 五. ...

  9. 【转】Redis学习笔记(五)如何用Redis实现分布式锁(2)—— 集群版

    原文地址:http://bridgeforyou.cn/2018/09/02/Redis-Dsitributed-Lock-2/ 单机版实现的局限性 在上一篇文章中,我们讨论了Redis分布式锁的实现 ...

  10. 那些年我们一起追逐的多线程(Thread、ThreadPool、委托异步调用、Task/TaskFactory、Parallerl、async和await)

    一. 背景 在刚接触开发的头几年里,说实话,根本不考虑多线程的这个问题,貌似那时候脑子里也有没有多线程的这个概念,所有的业务都是一个线程来处理,不考虑性能问题,当然也没有考虑多线程操作一条记录存在的并 ...