Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)
题目链接:传送门
思路:
计数。树的结构和边权的计数可以分开讨论。
①假设从a到b的路径上有e条边,那么路径上就有e-1个点。构造这条路径上的点有$A_{n-2}^{e-1}$种方案;
②这条路径的权值的选择,可以用隔板法来做,相当于用e-1个隔板分开m个球,要求每个区间至少有一个球,那么就相当于在m-1个间隙里插入e-1个隔板,有$C_{m-1}^{e-1}$种方案;
③在路径之外的点还有n-e-1个,对应有n-e-1条边,每条边的权值可取[1, m],所以有mn-e-1种方案;
④在路径之外的点构造成树,相当于把剩下的点挂在之前的e+1个点上。这等价于从n个点建一个有e+1棵树,并且有e+1个节点分别在不同的树上,的森林。
根据广义Cayley定理可知,从x个点建一个有y棵树的森林,使得给定的y个节点各自属于不同的树上,的方案数为f(x, y) = y*xx-y-1;
【此处广义Cayley的理解参考了jklover的博客】
因此有f(n, e+1)种方案。
综上所述,a到b的路径上有e条边的方案数为plan(e) = $A_{n-2}^{e-1}*C_{m-1}^{e-1}*m^{n-e-1}*f(n, e+1)$。
实现代码:
#include <bits/stdc++.h> using namespace std;
const int MAX_N = 1e6 + ;
const int md = 1e9 + ; inline int add(int a, int b) {
int res = (a+b)%md;
if (res < )
res += md;
return res;
}
inline int mul(int a, int b) {
return (int)(1LL * a * b % md);
}
int fpow(int a, int p) {
int res = ;
for (; p; p >>= ) {
if (p & )
res = mul(res, a);
a = mul(a, a);
}
return res;
}
inline int f(int x, int y) {
if (x == y)
return ;
return mul(y, fpow(x, x-y-));
} int fac[MAX_N], inv[MAX_N];
void init() {
fac[] = ;
for (int i = ; i < MAX_N; i++)
fac[i] = mul(fac[i-], i);
inv[MAX_N-] = fpow(fac[MAX_N-], md-);
for (int i = MAX_N-; i > ; i--)
inv[i-] = mul(inv[i], i);
} inline int A(int m, int n) {
return mul(fac[m], inv[m-n]);
}
inline int C(int m, int n) {
if (n > m)
return ;
return mul(A(m, n), inv[n]);
} int main()
{
init();
int n, m, a, b;
cin >> n >> m >> a >> b;
int ans = ;
for (int e = ; e <= n-; e++) {
int tmp = ;
tmp = mul(tmp, A(n-, e-));
tmp = mul(tmp, C(m-, e-));
tmp = mul(tmp, fpow(m, n-e-));
tmp = mul(tmp, f(n, e+));
ans = add(ans, tmp);
}
cout << ans << endl;
return ;
}
好久没写博客了呀(计数器劝退),不过碰到好题还是忍不住要回来扯两句QwQ。
Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)的更多相关文章
- Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学
Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...
- CF1109D Sasha and Interesting Fact from Graph Theory
CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory
Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html 题意 所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离 ...
- Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)
大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...
- CF1109DSasha and Interesting Fact from Graph Theory(数数)
题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- HDU6029 Graph Theory 2017-05-07 19:04 40人阅读 评论(0) 收藏
Graph Theory Time Limit: 2000/1000 M ...
- Graph Theory
Description Little Q loves playing with different kinds of graphs very much. One day he thought abou ...
随机推荐
- GET 和 POST 请求的优缺点和误区
Get和Post在面试中一般都会问到,一般的区别:(1)post更安全(不会作为url的一部分,不会被缓存.保存在服务器日志.以及浏览器浏览记录中)(2)post发送的数据更大(get有url长度限制 ...
- Linux c codeblock的使用(一):新建一个工程
(1)点击New->Project,出现如下图所示,然后再选择Console application,点击Go (2)点击Next (3)根据自己的需求选择特定的语言(前提是你的系统上有这个语言 ...
- unity 中让Text的文字动态刷新形式
第一种刷新文字形式 using UnityEngine; using System.Collections; using UnityEngine.UI; public class SensorText ...
- Android反编译apk并重新打包签名(Mac环境)
工具下载 apktool :https://ibotpeaches.github.io/Apktool/install dex2jar:https://github.com/pxb1988/dex2j ...
- Django知识总结(一)
壹 ● 有关http协议 一 ● 全称 超文本传输协议(HyperText Transfer Protocol) 二 ● 协议 双方遵循的规范 http协议是属于应用层的协议(还有ftp, smtp等 ...
- JVM CUP占用率过高排除方法,windows环境
jdk自带的jvisualvm可以看到程序CPU使用率,但是无法确定具体的线程,想要确定到具体的线程需要借用到微软的Process Explorer 具体排除方法: 一:打开资源管理器,找到cup占用 ...
- DevExpress ASP.NET Core Controls 2019发展蓝图(No.2)
本文主要为大家介绍DevExpress ASP.NET Core Controls 2019年的官方发展蓝图,更多精彩内容欢迎持续收藏关注哦~ [DevExpress ASP.NET Controls ...
- while循环与 for循环,函数定义与调用
import turtle turtle.setup(600,400,0,0) turtle.bgcolor('red') turtle.color('yellow') turtle.fillcolo ...
- Beta冲刺五
1.团队TSP 团队任务 预估时间 实际时间 完成日期 对数据库的最终完善 120 150 12.2 对学生注册功能的完善--新增触发器 150 140 11.29 对教师注册功能的完善 150 13 ...
- 编写一个求和函数sum,使输入sum(2)(3)或输入sum(2,3),输出结果都为5
昨天的笔试题,做的一塌糊涂,题目考的都很基础而且很细,手写代码对我来说是硬伤啊.其中有一道是这个,然而看到题目的时候,根本没有想到arguments:然后现在就恶补一下. arguments:用在函数 ...