tensorflow学习笔记————分类MNIST数据集
在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题。
一般是通过使用tensorflow内置的函数进行下载和加载,
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
但是我使用时遇到了“urllib.error.URLError: <urlopen error [Errno 99] Cannot assign requested address>”错误,查了一下也没什么好的解决方案,最后就自己去手动下载了。在python文件同目录下建立MNIST_data,进入目录后通过wget来下载
wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
最后运行我们的程序
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #通过tensorflow的库来载入训练的样本
mnist = input_data.read_data_sets("MNIST_data", one_hot=True) #每个批次的大小
batch_size = 100 #计算有多少批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder,x是图片样本,y是输出的结果
x = tf.placeholder(tf.float32, [None,784])
y = tf.placeholder(tf.float32, [None,10]) #创建一个简单的神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction)) #使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔类型列表中, tf.argmax返回一维张量中最大的值所在的位置,就是返回识别出来最可能的结果
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction,1)) #求准确率,tf.case()把bool转化为float
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys}) acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
print("Iter " + str(epoch) + ", Testing Accuracy" + str(acc))

tensorflow学习笔记————分类MNIST数据集的更多相关文章
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- TensorFlow学习笔记(MNIST报错修正 适用Tensorflow1.3)
在Tensorflow实战Google框架下的深度学习这本书的MNIST的图像识别例子中,每次都要报错 错误如下: Only call `sparse_softmax_cross_entropy_ ...
- tensorflow学习笔记(10) mnist格式数据转换为TFrecords
本程序 (1)mnist的图片转换成TFrecords格式 (2) 读取TFrecords格式 # coding:utf-8 # 将MNIST输入数据转化为TFRecord的格式 # http://b ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- TensorFlow学习笔记10-卷积网络
卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数 ...
随机推荐
- pygame-KidsCanCode系列jumpy-part17-mask-collide碰撞检测
这节我们研究下pygame的几种碰撞检测模式: 如上图,左侧是默认的检测模式:基于矩形的检测(这也是性能最好的模式), 右侧是基于圆形的检测(性能略差于矩形检测). 矩形检测法虽然性能好,但是缺点也很 ...
- pygame-KidsCanCode系列jumpy-part6-主角挂掉重新开始
游戏的虚拟世界中,最让人happy的一个因素就是主角挂了,而且重来,只要restart就行了,不象现实中人的生命只有1次.回顾上节的效果,如果方块向下落时,挡板没接住,整个游戏就跪了: 如果我们希望方 ...
- [转]开源.net 混淆器ConfuserEx介绍
今天给大家介绍一个开源.net混淆器——ConfuserEx http://yck1509.github.io/ConfuserEx/ 由于项目中要用到.net 混淆器,网上搜寻了很多款,比如Dotf ...
- 使用 vscode + chrome debuger断点调试 Vue 程序
总体参考:https://cn.vuejs.org/v2/cookbook/debugging-in-vscode.html 注意点: 1.修改 source-map 2.设置 webRoot 的路径 ...
- SOFABolt 源码分析
SOFABolt 是一个轻量级.高性能.易用的远程通信框架,基于netty4.1,由蚂蚁金服开源. 本系列博客会分析 SOFABolt 的使用姿势,设计方案及详细的源码解析.后续还会分析 SOFABo ...
- C# ExecutionContext 实现
网上关于ExecutionContext的说明比较少,我们来看看微软的描述吧, 名称 说明 Capture() 捕获从当前线程的执行上下文. CreateCopy() 创建当前执行上下文的副本. ...
- 【Kibana】自定义contextPath
#https://www.elastic.co/guide/en/kibana/5.0/_configuring_kibana_on_docker.html#https://discuss.elast ...
- Linux netstat常用命令
1.统计80端口连接数netstat -nat|grep -i "80"|wc -l 2.统计httpd协议连接数(查看Apache的并发请求数及其TCP连接状态)ps -ef|g ...
- PHP 开发者的 Docker 之旅
用 PHP 作为我们「Docker 开发大礼包」开篇是带着一些朝圣的心情的.这是一门堪称「古老」的语言,这也是一门争议最多的语言,这更是一门不断涅槃的语言.「PHP 是最好的语言」这个流传已久的梗,或 ...
- 物联网系统与CoAP之Hello,World
物联网系统与CoAP Hello,World 关于CoAP与物联网系统我们在上一篇中(ps:CoAP与物联网系统)中做一个简单的介绍,接着我们便開始试试CoAP协议的应用 CoAP应用 開始之前我们须 ...