『TensorFlow』0.x_&_1.x版本框架改动汇总
基本数值运算
除法和模运算符(/,//,%)现在匹配 Python(flooring)语义。这也适用于 [tf.div] 和 [tf.mod]。要获取基于强制整数截断的行为,可以使用 [tf.truncatediv] 和 [tf.truncatemod]。
现在推荐使用 [tf.divide()] 作为除法函数。[tf.div()] 将保留,但它的语义不会回应 Python 3 或 [from future] 机制
- [tf.mul,tf.sub ] 和 [tf.neg] 不再使用,改为 [tf.multiply],[tf.subtract] 和 [tf.negative]。
- tf.complex_abs已从Python界面中删除。 tf.abs支持复杂张量,现在应该使用 tf.abs。
tensorboard相关
分别替换tf.scalar_summary,tf.histogram_summary,tf.audio_summary,tf.image_summary与tf.summary.scalar,tf.summary.histogram,tf.summary.audio,tf.summary.image。新的摘要ops以名字而不是标签作为它们的第一个参数,意味着摘要ops现在尊重TensorFlow名称范围。
使用tf.summary.FileWriter和tf.summary.FileWriterCache替换tf.train.SummaryWriter和tf.train.SummaryWriterCache。
参数名修改
以下Python函数的参数在引用特定域时,全部改为使用 [axis]。目前仍将保持旧的关键字参数的兼容性,但计划在 1.0 最终版完成前删除。
tf.argmax: dimension 变为 axis
tf.argmin: dimension 变为 axis
tf.count_nonzero: reduction_indices 变为 axis
tf.expand_dims: dim 变为 axis
tf.reduce_all: reduction_indices 变为 axis
tf.reduce_any: reduction_indices 变为 axis
tf.reduce_join: reduction_indices 变为 axis
tf.reduce_logsumexp: reduction_indices 变为 axis
tf.reduce_max: reduction_indices 变为 axis
tf.reduce_mean: reduction_indices 变为 axis
tf.reduce_min: reduction_indices 变为 axis
tf.reduce_prod: reduction_indices 变为 axis
tf.reduce_sum: reduction_indices 变为 axis
tf.reverse_sequence: batch_dim 变为 batch_axis, seq_dim 变为 seq_axis
tf.sparse_concat: concat_dim 变为 axis
tf.sparse_reduce_sum: reduction_axes 变为 axis
tf.sparse_reduce_sum_sparse: reduction_axes 变为 axis
tf.sparse_split: split_dim 变为 axis
其他
其他暂时接触不多的API修改
TensorFlow / models已经被移动到一个单独的github库。
tf.reverse() 现在取轴的索引要反转。例如 [tf.reverse(a,[True,False,True])] 现在必须写为 [tf.reverse(a,[0,2])]。 [tf.reverse_v2()] 将保持到 TensorFlow 1.0 最终版。
[tf.pack] 和 [tf.unpack] 弃用,改为 [tf.stack] 和 [tf.unstack]。
[TensorArray.pack] 和 [TensorArray.unpack] 在弃用过程中,将来计划启用 [TensorArray.stack] 和 [TensorArray.unstack]。
tf.listdiff 已重命名为 tf.setdiff1d 以匹配 NumPy 命名。
tf.inv 已被重命名为 tf.reciprocal(组件的倒数),以避免与 np.inv 的混淆,后者是矩阵求逆。
tf.round 现在使用 banker 的舍入(round to even)语义来匹配 NumPy。
tf.split现在以相反的顺序并使用不同的关键字接受参数。我们现在将NumPy order 匹配为tf.split(value,num_or_size_splits,axis)。
tf.sparse_split现在采用相反顺序的参数,并使用不同的关键字。我们现在将NumPy order 匹配为tf.sparse_split(sp_input,num_split,axis)。注意:我们暂时要求 tf.sparse_split 需要关键字参数。
tf.concat现在以相反的顺序并使用不同的关键字接受参数。特别地,我们现在将NumPy order匹配为tf.concat(values,axis,name)。
默认情况下,tf.image.decode_jpeg使用更快的DCT方法,牺牲一点保真度来提高速度。通过指定属性dct_method ='INTEGER_ACCURATE',可以恢复到旧版行为。
Template.var_scope属性重命名为.variable_scope
SyncReplicasOptimizer已删除,SyncReplicasOptimizerV2重命名为SyncReplicasOptimizer。
tf.zeros_initializer()和tf.ones_initializer()现在返回一个必须用initializer参数调用的可调用值,在代码中用tf.zeros_initializer()替换tf.zeros_initializer。
SparseTensor.shape已重命名为SparseTensor.dense_shape。与SparseTensorValue.shape相同。
从公共API中删除RegisterShape。使用C++形状函数注册。
Python API 中的 _ref dtypes 已经弃用。
在C++ API(in tensorflow/cc)中,Input,Output等已经从tensorflow::ops命名空间移动到tensorflow。
将{softmax,sparse_softmax,sigmoid} _cross_entropy_with_logits的arg order更改为(labels,predictions),并强制使用已命名的args。
『TensorFlow』0.x_&_1.x版本框架改动汇总的更多相关文章
- 『TensorFlow』TFR数据预处理探究以及框架搭建
一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...
- 『TensorFlow』第三弹_可视化框架介绍_悄悄问圣僧
添加记录节点 -> 汇总记录节点 -> run汇总节点 -> [书写器生成]书写入文件 [-> 刷新缓冲区] 可视化关键点: 注意, 1.with tf.name_scope( ...
- 『TensorFlow』专题汇总
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...
- 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...
- 『TensorFlow』模型保存和载入方法汇总
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...
- 『TensorFlow』命令行参数解析
argparse很强大,但是我们未必需要使用这么繁杂的东西,TensorFlow自己封装了一个简化版本的解析方式,实际上是对argparse的封装 脚本化调用tensorflow的标准范式: impo ...
- 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...
- 『TensorFlow』滑动平均
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...
- 『TensorFlow』读书笔记_降噪自编码器
『TensorFlow』降噪自编码器设计 之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...
随机推荐
- node os模块
const os = require('os'); console.log(os.homedir()); console.log(os.hostname()); console.log(os.plat ...
- 使用maven搭建springMVC开发环境
1.引入框架所需的包,pom.xml文件中添加如下配置: <dependency> <groupId>org.springframework</groupId> & ...
- 如何发布第一个属于自己的npm包 到公网
发布前的准备 1. 注册一个npm账号 前往NPM官网进行注册 2. 创建一个简单的包 在本地创建一个项目文件夹 mannymu_demo (名字自己取,不要和NPM上已有的包名重复冲突就好)然后通过 ...
- 2018-2019-1 20189203《Linux内核原理与分析》第八周作业
第一部分 课本学习 ELF文件(目标文件)格式主要三种: 1)可重定向文件:文件保存着代码和适当的数据,用来和其他的目标文件一起来创建一个可执行文件或者是一个共享目标文件.(目标文件或者静态库文件,即 ...
- appium环境搭建-运行
appium是测试移动端的测试工具 首先要下载手机模拟器,或者连接真机.我用的夜神模拟器.安装打开它.安装这个有很高的兼容性要求,我也是小白,摸索了三天才弄出来 一.原理如图: 二.需要安装的软件: ...
- Mysql模糊查询Like传递参数的语句
set @keyWord='我的': select * from tblcontent where content like CONCAT('%',@keyWord,'%')
- flask重要点
django与flask的区别 django: 大而全的框架,包含了很多组件,例如:ORM.form.ModelForm.session... flask: 轻量级的可扩展强的框架.有丰富的第三方组件 ...
- Porsche Piwis Tester II V12.100 Version Released
Piwis Tester II v12.100 Version released today! In this new version we can find the latest type Pors ...
- MySQL5.7 Dockerfile
#Dockerfile for mysql5.7 FROM centos COPY ["src","/src"] RUN groupadd -g 1003 my ...
- URIError: Failed to decode param '/%PUBLIC_URL%/favicon.ico'
今天搭建antd的项目结构,本来项目是一个基础react项目,结果执行 yarn create umi yarn yarn start 项目启动后访问突然报错URIError: Failed to d ...