题目描述

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

di,s<=100000

tot<=1000

Solution

完全背包数组开不下, 大概要运算一天这样能出答案

假设没有带硬币的限制, 我们可以搞个完全背包算出 \(maxn\) 内每个的方案数, 就可以 \(O(1)\) 回答询问了

问题是如何解决这个限制问题

对于第 \(i\) 个硬币, 我们只能拿 \(d_{i} * c_{i}\) 这么多钱

那就是说如果我拿了 \((d_{i} + 1) * c[i]\) 这么多钱则剩下的不合法

那么 \(dp[S - (d_{i} + 1) * c[i]]\) 便不合法

然后发现这样可能会减掉重复的

容斥一下, 减去单数个的加上偶数个的

只有 4 枚硬币, 可以状压枚举状态(0 - 15), 模拟做容斥即可

说不明白的可以看代码

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(LL i = (x);i <= (y);i++)
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 200019;
LL c[7], T;//7777777
LL d[7], one[7], S;
LL dp[maxn];
void init(){
REP(i, 1, 4)c[i] = RD(), one[i] = 1 << (i - 1);
dp[0] = 1;
REP(i, 1, 4){
REP(j, c[i], maxn - 7){
dp[j] += dp[j - c[i]];
}
}
T = RD();
}
void solve(){
while(T--){
REP(i, 1, 4)d[i] = RD();
S = RD();
LL ans = 0;
REP(i, 0, 15){//每个状态
LL temp = S;
LL cnt = 0;
REP(j, 1, 4){
if(i & one[j])
temp -= (d[j] + 1) * c[j], cnt ^= 1;
}
if(temp < 0)continue;
if(!cnt)ans += dp[temp];
else ans -= dp[temp];
}
printf("%lld\n", ans);
}
}
int main(){
init();
solve();
return 0;
}

P1450 [HAOI2008]硬币购物的更多相关文章

  1. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

  2. 洛谷—— P1450 [HAOI2008]硬币购物

    P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...

  3. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  4. 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)

    2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...

  5. 洛谷P1450 [HAOI2008]硬币购物

    题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...

  6. 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)

    洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...

  7. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  8. Luogu P1450 [HAOI2008]硬币购物

    题目 一个很自然的想法是容斥. 假如只有一种硬币,那么答案就是没有限制的情况下买\(s\)的方案数减去强制用了\(d+1\)枚情况下买\(s\)的方案数即没有限制的情况下买\(s-c(d+1)\)的方 ...

  9. 洛谷P1450 [HAOI2008]硬币购物 背包+容斥

    无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...

随机推荐

  1. 使用matlab自带工具实现rcnn

    平台:matlab2016b matlab自带一个cifar10Net工具可用于深度学习. 图片标注 这里使用的是matlab自带的工具trainingImageLabeler对图像进行roi的标注. ...

  2. Oracle测试环境参数调整.

    测试环境上面Oracle数据库性能参数设置 1. 关闭回收站 alter system set recyclebin=off 2. 修改redo日志的大小 11g的默认大小是50m 如果redo fi ...

  3. python删除数组元素导致跳过元素

    复现的情况大概可以写成这样 abc = [1, 2, 2, 3, 4] print abc for index, i in enumerate(abc): if i == 2: del abc[ind ...

  4. Java之使用HttpClient发送GET请求

    package LoadRunner; import org.apache.http.HttpEntity; import org.apache.http.HttpResponse; import o ...

  5. selenium之使用unittest测试框架

    # 测试角色权限管理页面功能 from selenium import webdriver from login_page import LoginPage import random, time, ...

  6. Lodop导出excel及提示成功【回调和直接返回值】

    高版本的火狐和谷歌不再支持np插件之后,Lodop公司推出了C-Lodop,解决了这些浏览器不能用Lodop插件方式打印的问题,相比较Lodop插件,C-Lodop由于是以服务的形式出现,返回值不能直 ...

  7. Django-website 程序案例系列-5 模态对话框实现提交数据

    html代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  8. [IOI2018]狼人——kruskal重构树+可持久化线段树

    题目链接: IOI2018werewolf 题目大意:给出一张$n$个点$m$条边的无向图,点和边可重复经过,一个狼人初始为人形,有$q$次询问,每次询问要求人形态只能处于编号不小于$L$的点,狼形态 ...

  9. ZOJ1363 Chocolate 【生成函数】 【泰勒展开】

    题目大意: 有c种不同的巧克力,每种无限个,意味着取出每种的几率每次为1/c.现在你需要取n次.然后将统计每种取出来的巧克力的数量.若为偶数则舍去,否则留下一个.问最后留下m个的概率是多少. 题目分析 ...

  10. 一个开启多个事务导致OptimisticLockException异常的问题

    异常信息:org.eclipse.persistence.exceptions.OptimisticLockException 对象在其他的事物中被修改,而造成这一个问题的原因是:同时开启了两个事务, ...