Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {"e": 1} (given in terms of evalvars = ["e"] and evalints = [1]), return a list of tokens representing the simplified expression, such as ["-1*a","14"]

  • An expression alternates chunks and symbols, with a space separating each chunk and symbol.
  • A chunk is either an expression in parentheses, a variable, or a non-negative integer.
  • A variable is a string of lowercase letters (not including digits.) Note that variables can be multiple letters, and note that variables never have a leading coefficient or unary operator like "2x" or "-x".

Expressions are evaluated in the usual order: brackets first, then multiplication, then addition and subtraction. For example, expression = "1 + 2 * 3" has an answer of ["7"].

The format of the output is as follows:

  • For each term of free variables with non-zero coefficient, we write the free variables within a term in sorted order lexicographically. For example, we would never write a term like "b*a*c", only "a*b*c".
  • Terms have degree equal to the number of free variables being multiplied, counting multiplicity. (For example, "a*a*b*c"has degree 4.) We write the largest degree terms of our answer first, breaking ties by lexicographic order ignoring the leading coefficient of the term.
  • The leading coefficient of the term is placed directly to the left with an asterisk separating it from the variables (if they exist.)  A leading coefficient of 1 is still printed.
  • An example of a well formatted answer is ["-2*a*a*a", "3*a*a*b", "3*b*b", "4*a", "5*c", "-6"]
  • Terms (including constant terms) with coefficient 0 are not included.  For example, an expression of "0" has an output of [].

Examples:

Input: expression = "e + 8 - a + 5", evalvars = ["e"], evalints = [1]
Output: ["-1*a","14"] Input: expression = "e - 8 + temperature - pressure",
evalvars = ["e", "temperature"], evalints = [1, 12]
Output: ["-1*pressure","5"] Input: expression = "(e + 8) * (e - 8)", evalvars = [], evalints = []
Output: ["1*e*e","-64"] Input: expression = "7 - 7", evalvars = [], evalints = []
Output: [] Input: expression = "a * b * c + b * a * c * 4", evalvars = [], evalints = []
Output: ["5*a*b*c"] Input: expression = "((a - b) * (b - c) + (c - a)) * ((a - b) + (b - c) * (c - a))",
evalvars = [], evalints = []
Output: ["-1*a*a*b*b","2*a*a*b*c","-1*a*a*c*c","1*a*b*b*b","-1*a*b*b*c","-1*a*b*c*c","1*a*c*c*c","-1*b*b*b*c","2*b*b*c*c","-1*b*c*c*c","2*a*a*b","-2*a*a*c","-2*a*b*b","2*a*c*c","1*b*b*b","-1*b*b*c","1*b*c*c","-1*c*c*c","-1*a*a","1*a*b","1*a*c","-1*b*c"]

Note:

  1. expression will have length in range [1, 250].
  2. evalvars, evalints will have equal lengths in range [0, 100].

Approach #1: Simulate. [Java]

class Solution {
Map<String, Integer> map = new HashMap<>();
class Term {
int para = 1;
List<String> var = new ArrayList<>();
@Override
public String toString() {
if (para == 0) return "";
String ans = "";
for (String s : var) ans += "*" + s;
return para + ans;
} boolean equals(Term that) {
if (this.var.size() != that.var.size()) return false;
for (int i = 0; i < this.var.size(); ++i)
if (!this.var.get(i).equals(that.var.get(i))) return false;
return true;
} int compareTo(Term that) {
if (this.var.size() > that.var.size()) return -1;
if (this.var.size() < that.var.size()) return 1;
for (int i = 0; i < this.var.size(); ++i) {
int x = this.var.get(i).compareTo(that.var.get(i));
if (x != 0) return x;
}
return 0;
} Term times(Term that) {
Term pro = new Term(this.para * that.para);
for (String s : this.var) pro.var.add(new String(s));
for (String s : that.var) pro.var.add(new String(s));
Collections.sort(pro.var);
return pro;
} Term (int x) { para = x; }
Term (String s) {
if (map.containsKey(s)) para = map.get(s);
else var.add(s);
}
Term (Term that) {
this.para = that.para;
this.var = new ArrayList<>(that.var);
}
} class Expression {
List<Term> list = new ArrayList<>();
char oper = '+';
Expression(int x) { list.add(new Term(x)); }
Expression(String s) { list.add(new Term(s)); }
Expression(List<Term> l) { list = l; } Expression times(Expression that) {
List<Term> c = new ArrayList<>();
for (Term t1 : this.list)
for (Term t2 : that.list)
c.add(t1.times(t2));
c = combine(c);
return new Expression(c);
} Expression plus(Expression that, int sgn) {
List<Term> c = new ArrayList<>();
for (Term t : this.list) c.add(new Term(t));
for (Term t : that.list) {
Term t2 = new Term(t);
t2.para = t2.para * sgn;
c.add(t2);
}
c = combine(c);
return new Expression(c);
} Expression cal(Expression that) {
if (oper == '+') return plus(that, 1);
if (oper == '-') return plus(that, -1);
return times(that);
} List<String> toList() {
List<String> ans = new ArrayList<>();
for (Term t : list) {
String s = t.toString();
if (s.length() > 0) ans.add(s);
}
return ans;
} List<Term> combine(List<Term> a) {
Collections.sort(a, (t1, t2)->(t1.compareTo(t2)));
List<Term> c = new ArrayList<>();
for (Term t : a) {
if (c.size() != 0 && t.equals(c.get(c.size() - 1)))
c.get(c.size() - 1).para += t.para;
else
c.add(new Term(t));
}
return c;
}
} public List<String> basicCalculatorIV(String expression, String[] evalvars, int[] evalints) {
for (int i = 0; i < evalvars.length; ++i)
map.put(evalvars[i], evalints[i]);
int i = 0, l = expression.length();
Stack<Expression> stack = new Stack<>();
Stack<Integer> priStack = new Stack<>();
Expression zero = new Expression(0);
stack.push(zero);
priStack.push(0);
int pri = 0;
while (i < l) {
char ch = expression.charAt(i);
if (Character.isDigit(ch)) {
int num = 0;
while (i < l && Character.isDigit(expression.charAt(i))) {
num = num * 10 + (expression.charAt(i) - 48);
i++;
}
stack.add(new Expression(num));
continue;
}
if (Character.isLetter(ch)) {
String s = "";
while (i < l && Character.isLetter(expression.charAt(i))) {
s += expression.charAt(i);
i++;
}
stack.add(new Expression(s));
continue;
}
if (ch == '(') pri += 2;
if (ch == ')') pri -= 2;
if (ch == '+' || ch == '-' || ch == '*') {
int nowPri = pri;
if (ch == '*') nowPri++;
while (!priStack.isEmpty() && nowPri < priStack.peek()) {
Expression now = stack.pop(), last = stack.pop();
priStack.pop();
stack.push(last.cal(now));
}
stack.peek().oper = ch;
priStack.push(nowPri);
}
++i;
}
while (stack.size() > 1) {
Expression now = stack.pop(), last = stack.pop();
stack.push(last.cal(now));
}
return stack.peek().toList();
}
}

  

Analysis:

Using stack to implement the arithmetic operation.

We can give each operator a priority number, + and - is 0, while * is 1. When an operator is inside "()", its priority increases by 2 for every "()".

For example:

4*(a-(b+(x*y))+d*e)

the operator priorities are:

*   -   +   *   +   *

1  2   3  7   2   3

always do the operation with highest priority first.

class Trem if for each single term in our final answer.

class Expression is a list of class Terms.

We can do +-* for two Expressions.

Reference:

https://leetcode.com/problems/basic-calculator-iv/discuss/113551/Java-solution-using-stack

770. Basic Calculator IV的更多相关文章

  1. [LeetCode] Basic Calculator IV 基本计算器之四

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  2. [Swift]LeetCode770. 基本计算器 IV | Basic Calculator IV

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  3. leetcode770. Basic Calculator IV

    此题真可谓是练习编程语言的绝好材料 ! import java.util.*; class Solution { class Item { Map<String, Integer> var ...

  4. 224. Basic Calculator + 227. Basic Calculator II

    ▶ 两个四则表达式运算的题目,第 770 题 Basic Calculator IV 带符号计算不会做 Orz,第 772 题 Basic Calculator III 要收费 Orz. ▶ 自己的全 ...

  5. [LeetCode] Basic Calculator 基本计算器

    Implement a basic calculator to evaluate a simple expression string. The expression string may conta ...

  6. [LeetCode] Basic Calculator III 基本计算器之三

    Implement a basic calculator to evaluate a simple expression string. The expression string may conta ...

  7. [LeetCode] 772. Basic Calculator III 基本计算器之三

    Implement a basic calculator to evaluate a simple expression string. The expression string may conta ...

  8. [LeetCode] Basic Calculator II 基本计算器之二

    Implement a basic calculator to evaluate a simple expression string. The expression string contains ...

  9. Basic Calculator II

    Implement a basic calculator to evaluate a simple expression string. The expression string contains ...

随机推荐

  1. leetcode78

    本题是回溯法的基本应用,深度优先遍历,使用递归实现. class Solution { public: ]; vector<vector<int>> R; int n; //t ...

  2. CSS vertical-align属性详解

    . 首页 博客园 联系我 前言:关于vertical-align属性. 实践出真知. 垂直居中. 第二种用法. 留言评论 返回顶部 前言:关于vertical-align属性 vertical-ali ...

  3. 如何配置IIS使其支持APK文件的下载

    在管理工具里打开Internet 信息服务(IIS)管理器.然后选择需要配置的网站. 右侧的界面中会显示该网站的所有功能配置,我们选择并点击进入“MIME类型” 在左侧的操作区选择点击“添加”MIME ...

  4. Centos安装ffmpeg

    yum install -y ffmpeg 使用上面的命令安装却出现以下问题: Google后发现缺少一些扩展: wget https://download1.rpmfusion.org/free/e ...

  5. python 装饰器的理解以及类装饰器

    python装饰器的作用就是在不改变原有函数结构的情况下给该函数增加一个新功能,就是不入侵到原来函数里面修改代码给其增加一个新功能 先看代码 def out(fn): def inner(*args, ...

  6. 数据库设计,表与表的关系,一对一。One-To-One(1)

    如何处理对象间one-to-ont的映射关系:one-to-one: 处理一对一关联的方式有两种: 1.主键关联使用主键关联处理一对一的关系. 主键关联不需要额外的表字段:两行是通过这种一对一关系相关 ...

  7. 使用List需要注意的点

    目录 1. 概述 2. Arrays.asList(); 2-1. 产生不可操作的集合 2-2. 需要传入对象数组而不是基本类型数组 3. arrayList.subList(); 3-1. subL ...

  8. MySQL InnoDB引擎B+树索引简单整理说明

    本文出处:http://www.cnblogs.com/wy123/p/7211742.html (保留出处并非什么原创作品权利,本人拙作还远远达不到,仅仅是为了链接到原文,因为后续对可能存在的一些错 ...

  9. request设置cookies

    mycookie = { "PHPSESSID":"56v9clgo1kdfo3q5q8ck0aaaaa" } request.get(url,cookies ...

  10. URL和URI

    (一)URL和URI是什么 1.URL(Universal Resource Locator) 是统一资源定位符,对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址. ...