枚举子串的中心,往两侧扩展,将两侧对应位置的字符交替写下来,得到一个字符串$S$。

若前后长度为$L$的子串循环同构,则在$S$中它们对应长度为$2L$的前缀,需要满足它可以由不超过$2$个偶回文串拼接而成。

有一个结论是,若$S=uv$,其中$uv$都是偶回文串,那么要么$u$是$S$的最长偶回文前缀,要么$v$是$S$的最长偶回文后缀。

证明:

设$S=x_1y_1=x_2y_2=x_3y_3$。

假设结论不成立,那么显然双回文划分数$\geq 3$,设$x_1$为$S$的最长回文前缀,$y_3$是$S$的最长回文后缀,$x_2$和$y_2$都是回文串,则$y_1$和$x_3$都不是回文串。

因为$x_1$是最长回文前缀,所以$|x_1|>|x_2|$,同理$|y_2|<|y_3|$,则$|x_1|>|x_2|>|x_3|$。

................[v.....]

[x1...................][y1....]

[x2..........][y2.............]

[x3.....][y3..................]

设$x_1=x_2v$,那么因为$v$是回文串$y_2$的前缀,所以$v^R$是$y_2$的后缀,也是$y_3$的后缀,因为$y_3$是回文串,所以$v$是$y_3$的前缀,得出$x_3v$是$x_1$的前缀。

因为$x_1$是回文串,$x_2$是$x_1$的前缀,所以$x_2^R$是$x_1$的后缀,又因为$x_2$是回文串,所以$x_2$也是$x_1$的后缀,所以长度$|x_1|-|x_2|=|v|$是$x_1$的一个周期,也是$x_1$的前缀$x_3v$的一个周期。这说明$|v|$也是$v^Rx_3^R$的一个周期,即$x_3^R$是$v^Rv^R...v^Rv^R$的前缀。

因为$v$是回文串$x_1$的后缀,所以$v^R$是$x_1$的前缀,而$|v|$是$x_1$的周期,所以$x_1$是$v^Rv^R...v^Rv^R$的前缀,那么$x_1$的前缀$x_3$也是$v^Rv^R...v^Rv^R$的前缀。

因为$x_3^R$和$x_3$都是$v^Rv^R...v^Rv^R$的前缀,所以$x_3=x_3^R$,即$x_3$是回文串,和假设矛盾。所以结论成立。

通过Manacher预处理出每个位置的最长回文半径$f$,即可求出每个前缀的最长偶回文前缀和最长偶回文后缀,剩下部分可以根据$f$数组$O(1)$判断一个子串是否是回文串。

时间复杂度$O(n^2)$。

#include<cstdio>
const int N=10010;
int n,i,a[N],c[N],s[N],f[N],pre[N],suf[N],ans;
inline int min(int a,int b){return a<b?a:b;}
inline void umin(int&a,int b){a>b?(a=b):0;}
inline void umax(int&a,int b){a<b?(a=b):0;}
inline bool check(int l,int r){
if(l>r)return 1;
return l+r+f[l+r]>r+r;
}
inline void solve(int x){
int i,j,r,p,m=0,len;
for(i=x,j=x+1;i&&j<=n;i--,j++)c[++m]=a[i],c[++m]=a[j];
for(i=1;i<=m;i++)s[i<<1]=c[i],s[i<<1|1]=-1;
s[0]=-2,s[1]=-1,s[len=(m+1)<<1]=-3;
for(r=p=0,f[1]=1,i=2;i<len;i++){
for(f[i]=r>i?min(r-i,f[p*2-i]):1;s[i-f[i]]==s[i+f[i]];f[i]++);
if(i+f[i]>r)r=i+f[i],p=i;
}
for(i=0;i<=m+1;i++)pre[i]=0,suf[i]=len;
for(i=3;i<len;i+=2){
if(f[i]==i)pre[f[i]-1]=f[i]-1;
umin(suf[(i+f[i]-1)>>1],i>>1);
}
for(i=1;i<=m;i++)umax(pre[i],pre[i-1]);
for(i=m;i;i--)umin(suf[i],suf[i+1]);
for(i=0;i<=m;i++)if(suf[i]>=i)suf[i]=0;else suf[i]=(i-suf[i])<<1;
for(i=2;i<=m;i+=2)if(check(pre[i]+1,i)||check(1,i-suf[i]))ans++;
}
int main(){
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
for(i=1;i<n;i++)solve(i);
return printf("%d",ans),0;
}

  

BZOJ4962 : 简单的字符串的更多相关文章

  1. Redis的简单动态字符串实现

    Redis 没有直接使用 C 语言传统的字符串表示(以空字符结尾的字符数组,以下简称 C 字符串), 而是自己构建了一种名为简单动态字符串(simple dynamic string,sds)的抽象类 ...

  2. SQL点滴3—一个简单的字符串分割函数

    原文:SQL点滴3-一个简单的字符串分割函数 偶然在电脑里看到以前保存的这个函数,是将一个单独字符串切分成一组字符串,这里分隔符是英文逗号“,”  遇到其他情况只要稍加修改就好了 CREATE FUN ...

  3. Redis数据结构之简单动态字符串SDS

    Redis的底层数据结构非常多,其中包括SDS.ZipList.SkipList.LinkedList.HashTable.Intset等.如果你对Redis的理解还只停留在get.set的水平的话, ...

  4. 小白的Redis学习(一)-SDS简单动态字符串

    本文为读<Redis设计与实现>的记录.该书以Redis2.9讲解Redis相关内容.请注意版本差异. Redis使用C语言实现,他对C语言中的char类型数据进行封装,构建了一种简单动态 ...

  5. redis_简单动态字符串

    在redis中,C字符串(以'\0'结尾的字符数组)只用在一些无需对字符串值进行修改的地方,比如打印日志.其他情况,redis使用SDS - SimpleDynamicString 简单动态字符串,来 ...

  6. redis 系列3 数据结构之简单动态字符串 SDS

    一.  SDS概述 Redis 没有直接使用C语言传统的字符串表示,而是自己构建了一种名为简单动态字符串(simple dynamic string, SDS)的抽象类型,并将SDS用作Redis的默 ...

  7. 图解Redis之数据结构篇——简单动态字符串SDS

    图解Redis之数据结构篇--简单动态字符串SDS 前言     相信用过Redis的人都知道,Redis提供了一个逻辑上的对象系统构建了一个键值对数据库以供客户端用户使用.这个对象系统包括字符串对象 ...

  8. Redis中的简单动态字符串

    Redis没有直接使用C语言传统的字符串表示(以空字符结尾的字符数组,以下简称C字符串),而是自己构建了一种名为简单动态字符串(simple dynamic string,SDS)的抽象类型,并将SD ...

  9. Redis---SDS(简单动态字符串)

    Redis 没有直接使用 C 语言传统的字符串表示(以空字符结尾的字符数组,以下简称 C 字符串), 而是自己构建了一种名为简单动态字符串(simple dynamic string,SDS)的抽象类 ...

随机推荐

  1. requests禁止重定向

    response = requests.get( 'http://weixin.sogou.com/weixin?query=%E9%A3%8E%E6%99%AF&type=2&pag ...

  2. node.js vue-axios和vue-resource

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 函数sigsuspend

    sigqueue函数原型: 函数作用:新的发送信号系统调用,主要是针对实时信号提出的支持信号带有参数,与函数sigaction()配合使用 int sigqueue(pid_t pid, int si ...

  4. Android自定义View+贝赛尔曲线

    Android -- 贝塞尔曲线公式的推导和简单使用https://www.cnblogs.com/wjtaigwh/p/6647114.html Android -- 贝塞尔使圆渐变为桃心http: ...

  5. ExceptionLess的webAPI调用

    引用 <package id="bootstrap" version="3.0.0" targetFramework="net461" ...

  6. Inflated 3D ConvNet 【I3D】

    Two-Stream Inflated 3D ConvNet (I3D) HMDB-51: 80.9% and UCF-101: 98.0% 在Inception-v1 Kinetics上预训练 Co ...

  7. 基于bootstrap的jQuery多级列表树插件 treeview

    http://www.cnblogs.com/mfc-itblog/p/5233453.html http://www.htmleaf.com/jQuery/Menu-Navigation/20150 ...

  8. Vue爬坑之路

    1.关闭eslint严格语法检查

  9. vue中使用axios最详细教程

    前提条件:vue-cli 项目 安装: npm npm 在main.js导入: // 引入axios,并加到原型链中 import axios from 'axios'; Vue.prototype. ...

  10. Ubuntu16.04+Opencv3.3的安装教程

    需要准备的基本材料(请先看完整个安装过程再进行下面的操作): 一.到Opecv-Release的Github项目上下载最新的Opencv版本,注意---基于python2.7,可选用 OpenCV2. ...