传送门


换根类型的统计问题动态点分治都是很好做的。

设所有点的点权和为$sum$

首先,我们先不考虑求$\sum\limits_i s_i^2$,先考虑如何在换根的情况下求$\sum\limits_i s_i$。

考虑一个点$i$会被统计多少次,显然是$dep_i+1$,那么$\sum\limits_i s_i = \sum\limits_i (dep_i+1) \times val_i = \sum\limits_i dep_i \times val_i + sum$。

$\sum\limits_i dep_i \times val_i$是不是似曾相识……其实就是幻想乡战略游戏

接着我们考虑这个烦人的平方项。那么我们还需要推一个结论:换根不会影响$W=\sum\limits_i s_i \times (sum - s_i)$的值。

证明如下:

我们考虑$K = \sum\limits_i \sum\limits_j val_i \times val_j \times dis(i,j)$,意思就是取两个点,将中间的所有边设为两边的点的权值之积然后相加。显然这一个值是不会因为根的变化而改变的。

接着我们考虑一条边$(x,y)$对$K$的贡献,显然是这条边分割开来的两个子树的权值和的乘积,而无论根是哪一个,这两个子树中必定有且仅有一个是树的一个子树,假设$x$对应的树是子树,它就代表着$s_x \times (sum - s_x)$,把所有边的贡献加起来就是$W=\sum\limits_i s_i \times (sum - s_i)=\sum\limits_i \sum\limits_j val_i \times val_j \times dis(i,j)$,所以$W$是不会因为根的变化而变化的。

而$W=\sum\limits_i s_i \times (sum - s_i) = sum \times \sum\limits_i s_i - \sum\limits_i s_i^2$,那么$\sum\limits_i s_i^2 = sum \times \sum\limits_i s_i - W$

接着我们考虑修改点权对$W$的影响。由$\Delta W = \Delta v \times \sum\limits_j val_j \times dep_j$,实质跟上面计算$\sum\limits_i s_i$的方法一样。

 #include<bits/stdc++.h>
 #define int long long
 //This code is written by Itst
 using namespace std;

 inline int read(){
     ;
     ;
     char c = getchar();
     while(c != EOF && !isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(c != EOF && isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 ;
 struct Edge{
     int end , upEd;
 }Ed[MAXN << ];
 ] , dis[MAXN][] , dep[MAXN];
 ][MAXN << ] , fir[MAXN] , logg2[MAXN << ] , size[MAXN] , cur[MAXN] , up[MAXN] , sum[MAXN];
 int cntEd , N , M , minSize , nowSize , minInd , cntST , W , allV;
 bool vis[MAXN];

 inline void addEd(int a , int b){
     Ed[++cntEd].end = b;
     Ed[cntEd].upEd = head[a];
     head[a] = cntEd;
 }

 void init_dfs(int x , int p){
     dep[x] = dep[p] + ;
     fir[x] = ++cntST;
     sum[x] = val[x];
     ST[][cntST] = x;
     for(int i = head[x] ; i ; i = Ed[i].upEd)
         if(Ed[i].end != p){
             init_dfs(Ed[i].end , x);
             ST[][++cntST] = x;
             sum[x] += sum[Ed[i].end];
         }
     W += sum[x] * (allV - sum[x]);
 }

 inline int cmp(int a , int b){
     return dep[a] < dep[b] ? a : b;
 }

 void init_st(){
      ; i <= cntST ; ++i)
         logg2[i] = logg2[i >> ] + ;
      ;  << i <= cntST ; ++i)
          ; j + ( << i) -  <= cntST ; ++j)
             ST[i][j] = cmp(ST[i - ][j] , ST[i - ][j + ( << (i - ))]);
 }

 inline int LCA(int x , int y){
     x = fir[x];
     y = fir[y];
     if(x > y)
         swap(x , y);
     ];
      << t) + ]);
 }

 inline int calcLen(int x , int y){
     );
 }

 void getSize(int x){
     vis[x] = ;
     ++nowSize;
     for(int i = head[x] ; i ; i = Ed[i].upEd)
         if(!vis[Ed[i].end])
             getSize(Ed[i].end);
     vis[x] = ;
 }

 void getRoot(int x){
     vis[x] = size[x] = ;
     ;
     for(int i = head[x] ; i ; i = Ed[i].upEd)
         if(!vis[Ed[i].end]){
             getRoot(Ed[i].end);
             maxN = max(maxN , size[Ed[i].end]);
             size[x] += size[Ed[i].end];
         }
     maxN = max(maxN , nowSize - size[x]);
     if(maxN < minSize){
         minSize = maxN;
         minInd = x;
     }
     vis[x] = ;
 }

 void init_dfz(int x , int p){
     nowSize = ;
     minSize = 0x7fffffff;
     getSize(x);
     getRoot(x);
     x = minInd;
     fa[x][] = x;
     fa[x][] = p;
     vis[x] = ;
     sum[x] = val[x];
      ; fa[x][i] ; ++i){
         fa[x][i + ] = fa[fa[x][i]][];
         dis[x][i] = calcLen(fa[x][i] , x);
         up[fa[x][i - ]] += dis[x][i] * val[x];
         sum[fa[x][i]] += val[x];
         cur[fa[x][i]] += dis[x][i] * val[x];
     }
     for(int i = head[x] ; i ; i = Ed[i].upEd)
         if(!vis[Ed[i].end])
             init_dfz(Ed[i].end , x);
 }

 void init(){
     init_dfs( , );
     init_st();
     init_dfz( , );
 }

 inline int query(int x){
     int all = cur[x];
      ; fa[x][i] ; ++i){
         all += cur[fa[x][i]] - up[fa[x][i - ]];
         all += (sum[fa[x][i]] - sum[fa[x][i - ]]) * dis[x][i];
     }
     return all;
 }

 inline void modify(int x , int v){
     W += (v - val[x]) * query(x);
     allV += v - val[x];
     sum[x] += v - val[x];
      ; fa[x][i] ; ++i){
         up[fa[x][i - ]] += (v - val[x]) * dis[x][i];
         cur[fa[x][i]] += (v - val[x]) * dis[x][i];
         sum[fa[x][i]] += v - val[x];
     }
     val[x] = v;
 }

 signed main(){
 #ifndef ONLINE_JUDGE
     freopen("3676.in" , "r" , stdin);
     freopen("3676.out" , "w" , stdout);
 #endif
     N = read();
     M = read();
      ; i < N ; ++i){
         int a = read() , b = read();
         addEd(a , b);
         addEd(b , a);
     }
      ; i <= N ; ++i){
         val[i] = read();
         allV += val[i];
     }
     init();
      ; i <= M ; ++i)
         ){
             int x = read() , y = read();
             modify(x , y);
         }
         else
             cout << allV * (query(read()) + allV) - W << '\n';
     ;
 }

Luogu3676 小清新数据结构题 动态点分治的更多相关文章

  1. 洛谷P3676 小清新数据结构题 [动态点分治]

    传送门 思路 这思路好妙啊! 首先很多人都会想到推式子之后树链剖分+线段树,但这样不够优美,不喜欢. 脑洞大开想到这样一个式子: \[ \sum_{x} sum_x(All-sum_x) \] 其中\ ...

  2. [Luogu3676]小清新数据结构题

    题面戳我 题意:给一棵树,树上有点权,每次操作为修改一个点的点权,或者是询问以某个点为根时,每棵子树(以每个点为根,就有n棵子树)点权和的平方和. \(n\le2*10^5\),保证答案在long l ...

  3. [luogu3676] 小清新数据结构题 [树链剖分+线段树]

    题面 传送门 思路 本来以为这道题可以LCT维护子树信息直接做的,后来发现这样会因为splay形态改变影响子树权值平方和,是splay本身的局限性导致的 所以只能另辟蹊径 首先,我们考虑询问点都在1的 ...

  4. Luogu3676 小清新数据结构题(树链剖分+线段树)

    先不考虑换根.考虑修改某个点权值对答案的影响.显然这只会改变其祖先的子树权值和,设某祖先原子树权值和为s,修改后权值增加了x,则对答案的影响为(s+x)2-s2=2sx+x2.可以发现只要维护每个点到 ...

  5. 【Luogu3676】小清新数据结构题(动态点分治)

    [Luogu3676]小清新数据结构题(动态点分治) 题面 洛谷 题解 先扯远点,这题我第一次看的时候觉得是一个树链剖分+线段树维护. 做法大概是这样: 我们先以任意一个点为根,把当前点看成是一棵有根 ...

  6. 洛谷 P3676 - 小清新数据结构题(动态点分治)

    洛谷题面传送门 题目名称好评(实在是太清新了呢) 首先考虑探究这个"换根操作"有什么性质.我们考虑在换根前后虽然每个点的子树会变,但整棵树的形态不会边,换句话说,割掉每条边后,得到 ...

  7. 【刷题】洛谷 P3676 小清新数据结构题

    题目背景 本题时限2s,内存限制256M 题目描述 在很久很久以前,有一棵n个点的树,每个点有一个点权. 现在有q次操作,每次操作是修改一个点的点权或指定一个点,询问以这个点为根时每棵子树点权和的平方 ...

  8. 洛谷P3676 小清新数据结构题(动态点分治+树链剖分)

    传送门 感觉这题做下来心态有点崩……$RMQ$求$LCA$没有树剖快我可以理解为是常数太大……然而我明明用了自以为不会退化的点分然而为什么比会退化的点分跑得反而更慢啊啊啊啊~~~ 先膜一波zsy大佬 ...

  9. 洛谷 P3676 小清新数据结构题

    https://www.luogu.org/problemnew/show/P3676 这题被我当成动态dp去做了,码了4k,搞了一个换根的动态dp #include<cstdio> #i ...

随机推荐

  1. 【读书笔记】iOS-优化iOS Web应用

    一,代码优化: 代码优化是任何优化技术的第一步,因为归根结底网页上的一切都是构建在代码之上的.优秀的代码可以节省宽带,减少渲染延迟,以及提高页面的可读性和长远的可维护性.下面列出了一些在Web应用中编 ...

  2. JVM vs DVM

  3. Git 学习一

    刚刚接触git,学习现骨干操作并记录一下过程中的小问题(Windows下) 1.新建git目录 创建一个目录,使用命令 git init 2.添加文件  git add a.txt 3.提交文件  g ...

  4. maven(七),本地仓库

    运行机制: 在pom.xml文件中添加依赖jar包时,首先会从本地仓库查找,如果本地仓库不存在,就从中央仓库下载到本地仓库,中央仓库是maven默认的远程仓库 仓库坐标 eclipse默认会在wind ...

  5. [20171205]uniq命令的输入输出.txt

    [20171205]uniq命令的输入输出.txt --//前几天遇到XXD与通配符问题,链接http://blog.itpub.net/267265/viewspace-2147702/--//今天 ...

  6. 洗礼灵魂,修炼python(43)--巩固篇—经典类/新式类

    经典类 1.什么是经典类 就是在使用class关键词时,括号内不添加object类的就叫经典类,前面的博文里是绝对解析过的,所以你应该知道,经典类现在已经仅存在于python2了,因为python3不 ...

  7. 【hexo】03config文件配置详解

    YAML 是专门用来写配置文件的语言,非常简洁和强大,我们的配置文件就是这种格式.需要了解的只有: # 我是文配置件的注释 重要提示,例如:"theme: landspace"中冒 ...

  8. Azkaban-2.5.0-部署与常见案例

    该文章是基于 Hadoop2.7.6_01_部署 . Hive-1.2.1_01_安装部署 进行的 1. 前言 在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核 ...

  9. Python实现Excel转换工具小结

    经历过的打表工具从c++.C#,再到Python,算下来还是Python方便些.一天即可上手开发,非常适合快速迭代中的各种小工具开发. Python开源的第三方库很多,涉及excel方面的也有好几个x ...

  10. Cocoapods的安装和使用(2018-08-07更新)

    一.Cocoapods的安装 第一步:打开终端 第二步:修改ruby镜像引用 gem source --remove https://rubygems.org/ gem sources -a http ...