POJ 1986 Distance Queries(LCA Tarjan法)
Distance Queries
【题目链接】Distance Queries
【题目类型】LCA Tarjan法
&题意:
输入n和m,表示n个点m条边,下面m行是边的信息,两端点和权,后面的那个字母无视掉,没用的。接着k,下面k个询问lca,输出即可
&题解:
首先看的这个 http://www.cnblogs.com/JVxie/p/4854719.html 大致懂了方法,之后又找了这个代码 http://blog.csdn.net/lianai911/article/details/42300301 就懂了一些.
【时间复杂度】\(O(n+q)\)
&代码:
#include <cstdio>
#include <bitset>
#include <iostream>
#include <set>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
using namespace std;
#define INF 0x3f3f3f3f
#define ll long long
#define fo(i,a,b) for(int i=(a);i<=(b);i++)
#define fd(i,a,b) for(int i=(a);i>=(b);i--)
const int maxn = 80000 + 7;
int fa[maxn], Head[maxn], QHead[maxn], Dist[maxn];
struct Edge {
int to, next, w;
} edges[maxn], Qedges[maxn];
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
bool vis[maxn];
void LCA(int u) {
fa[u] = u;
vis[u] = true;
for(int k = Head[u]; k != -1; k = edges[k].next) {
if(!vis[edges[k].to]) {
Dist[edges[k].to] = Dist[u] + edges[k].w;
LCA(edges[k].to);
fa[edges[k].to] = u;
}
}
for(int k = QHead[u]; k != -1; k = Qedges[k].next) {
if(vis[Qedges[k].to]) {
Qedges[k].w = Dist[u] + Dist[Qedges[k].to] - 2 * Dist[find(Qedges[k].to)];
}
}
}
int id, iq;
void ori() {
memset(fa, 0, sizeof(fa));
memset(vis, 0, sizeof(vis));
memset(Head, -1, sizeof(Head));
memset(QHead, -1, sizeof(QHead));
memset(edges, 0, sizeof(edges));
memset(Qedges, 0, sizeof(Qedges));
id = 0;
iq = 0;
}
void Add(int x, int y, int z, int Head[], int& id, Edge edges[]) {
edges[id].to = y;
edges[id].w = z;
edges[id].next = Head[x];
Head[x] = id++;
}
int main() {
freopen("E:1.in", "r", stdin);
int n, m, u, v, w;
char c;
while(~scanf("%d%d", &n, &m)) {
ori();
fo(i, 1, m) {
scanf("%d%d%d %c", &u, &v, &w, &c);
Add(u, v, w, Head, id, edges);
Add(v, u, w, Head, id, edges);
}
scanf("%d", &m);
fo(i, 1, m) {
scanf("%d%d", &u, &v);
Add(u, v, 0, QHead, iq, Qedges);
Add(v, u, 0, QHead, iq, Qedges);
}
LCA(1);
for(int i = 0; i < iq; i += 2)
printf("%d\n", max(Qedges[i].w, Qedges[i + 1].w));
}
return 0;
}
POJ 1986 Distance Queries(LCA Tarjan法)的更多相关文章
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
- POJ 1986 Distance Queries LCA两点距离树
标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...
- POJ 1986 Distance Queries(Tarjan离线法求LCA)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12846 Accepted: 4552 ...
- poj 1986 Distance Queries LCA
题目链接:http://poj.org/problem?id=1986 Farmer John's cows refused to run in his marathon since he chose ...
- POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]
题目链接:http://poj.org/problem?id=1986 Description Farmer John's cows refused to run in his marathon si ...
- POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)
题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】
任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total ...
- poj 1986 Distance Queries(LCA)
Description Farmer John's cows refused to run in his marathon since he chose a path much too long fo ...
随机推荐
- C语言 · 组合数
组合数 从4个人中选2个人参加活动,一共有6种选法. 从n个人中选m个人参加活动,一共有多少种选法?下面的函数实现了这个功能. 请仔细分析代码,填写缺少的部分(下划线部分). 注意:请把填空的答案(仅 ...
- centos图形界面,vncserver
yum -y groupinstall "Server with GUI" RHEL7 安装图形界面1. 以root角色运行以下命令来安装TigerVNC server yum i ...
- 网络I/O模型---同步异步阻塞非阻塞之惑
网络I/O模型 人多了,就会有问题.web刚出现的时候,光顾的人很少.近年来网络应用规模逐渐扩大,应用的架构也需要随之改变.C10k的问题,让工程师们需要思考服务的性能与应用的并发能力. 网络应用需要 ...
- Ubuntu16.04首次root登录设置
一.首次登录root模式设置 当第一次安装并登录Ubuntu16.04系统时,系统默认只能使用guest模式登录.登录系统后,在图像界面的右上方的系统设置中可转换为普通用户模式. 在普通登录模式下,经 ...
- python2.7环境下的flask项目导入模块失败解决办法
如下一个flask项目的目录: 这个flask项目在python3.6环境下可以正常启动,但是在python2.7环境下如下报错提示: 提醒模块找不到.如下解决方法: 只需要在views目录里面加一个 ...
- python基础类型—数字(Number)
Python3 支持 int.float.bool.complex(复数). 在Python 3里,只有一种整数类型 int,表示为长整型,没有 python2 中的 Long. 像大多数语言一样,数 ...
- poj3255 Roadblocks
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13594 Accepted: 4783 Descr ...
- 8、路由 router
路由:router 用户功能 /user ----> index.html /user/login ----> login.html /user/reg ----> reg.html ...
- Timer和时间调度
Timer作为JDK提供的util工具,不太适合作为周期调度任务,只适合简单的定时操作(按照一定时间频率出发任务),在java的领域解决方案中,Quartz无疑是翘楚. Timer的调度方法有: pu ...
- yarn配置日志聚合
[原文地址] 日志聚集是YARN提供的日志中央化管理功能,它能将运行完成的Container/任务日志上传到HDFS上,从而减轻NodeManager负载,且提供一个中央化存储和分析机制.默认情况下, ...