BZOJ3425[POI2013]Polarization——DP+bitset+分块
题目描述
Everyone knew it would only be a matter of time. So what? Faced for years on, a peril becomes the every-day reality. It loses its meaning...
Today the letter of the Bitotian char Bittard to the Byteotian king Byteasar was released to the public. Bitotia requested annexation of the whole Byteotia on pain of using the Bit Polarizing Magnet (BPM). If used, the BPM would make each and every road in Byteotia unidirectional. The enemy knows only too well that this could be a fatal blow to the minimalist Byteotian infrastructure - there is a unique way between each pair of towns.
How badly can the BPM damage the Byteotian infrastructure? Determine the minimum and the maximum number of such pairs of towns that it will still be possible to travel from one of them to the other while observing the new roads orientation.
给定一棵树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从u到达v的点对(u,v)个数。求最小可达点对数和最大可达点对数
输入
The first line of the standard input gives a single integer N (1<=N<=250000), the number of towns in Byteotia. The N-1 lines that follow describe these roads. Each such line holds two integers, U and V (1<=U<=V<=N) , which indicate that there is a direct road (still bidirectional at the moment) linking the towns no.
and
.
输出
Two integers should be printed to the first and only line of the standard output. The first number should be the minimum and the second - the maximum number of pairs of towns which could remain connected (though in one direction only) after the roads are polarized.
样例输入
1 2
1 3
1 4
样例输出
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n;
int m;
int mn;
ll ans;
ll sum;
int x,y;
int tot;
int cnt;
int root;
int s[510];
int q[250010];
int d[250010];
int to[5000010];
int head[250010];
int next[500010];
int size[250010];
bitset<250010>f;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x)
{
sum+=d[x]-1;
size[x]=1;
int mx=0;
for(int i=head[x];i;i=next[i])
{
if(!d[to[i]])
{
d[to[i]]=d[x]+1;
dfs(to[i]);
size[x]+=size[to[i]];
mx=max(mx,size[to[i]]);
}
}
mx=max(mx,n-size[x]);
if(mx<mn)
{
mn=mx;
root=x;
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
m=sqrt(n);
mn=n;
d[1]=1;
dfs(1);
memset(d,0,sizeof(d));
d[root]=1;
sum=0;
dfs(root);
for(int i=head[root];i;i=next[i])
{
q[++cnt]=size[to[i]];
}
f[0]=1;
for(int i=1;i<=cnt;i++)
{
if(q[i]<=m)
{
s[q[i]]++;
}
else
{
f=f|(f<<q[i]);
}
}
for(int i=1;i<=m;i++)
{
for(int j=1;j<=s[i];s[i]-=j,j<<=1)
{
f=f|(f<<(j*i));
}
if(s[i])
{
f=f|(f<<(s[i]*i));
}
}
for(int i=0;i<=n;i++)
{
if(f[i])
{
ans=max(ans,sum+(1ll*i*(n-i-1)));
}
}
printf("%d %lld",n-1,ans);
}
BZOJ3425[POI2013]Polarization——DP+bitset+分块的更多相关文章
- BZOJ3425 : Poi2013 Polarization
最小值肯定是把树看作二分图,此时答案为$n-1$. 最大值一定是选取重心为根,任意一个子树要么全部指向根,要么全部背离根,这样可以制造最大的星型图. 统计出每个子树的大小后做01背包,如果小于$\sq ...
- BZOJ.3425.[POI2013]Polarization(DP 多重背包 二进制优化)
BZOJ 洛谷 最小可到达点对数自然是把一条路径上的边不断反向,也就是黑白染色后都由黑点指向白点.这样答案就是\(n-1\). 最大可到达点对数,容易想到找一个点\(a\),然后将其子树分为两部分\( ...
- 【BZOJ3425】Poi2013 Polarization 猜结论+DP
[BZOJ3425]Poi2013 Polarization Description 给定一棵树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从u到达v的点对(u,v)个数.求最小 ...
- HDU5716, HDU5745【dp+bitset】
DP+bitset HDU5716 dp[i][j] = dp[i-1][j-1] && (s[i] in set[j]); 第二维压bitset #include <bits ...
- hdu5745--La Vie en rose (DP+bitset)
好题,学到新姿势! 题意:给两个字符串 a 和 b ,b可以进行变换,规则是可以任意交换相邻两个字符的位置,但是不可以有交叉(例如3和4交换,5和6交换 互不影响,但是2和3,3和4就不可以).求a中 ...
- hdu5745 La Vie en rose 巧妙地dp+bitset优化+滚动数组减少内存
/** 题目:hdu5745 La Vie en rose 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5745 题意:题目给出的变换规则其实就是交换相邻 ...
- 字符串匹配dp+bitset,滚动数组优化——hdu5745(经典)
bitset的经典优化,即把可行性01数组的转移代价降低 bitset的适用情况,当内层状态只和外层状态的上一个状态相关,并且内层状态的相关距离是一个固定的数,可用bitset,换言之,能用滚动数组是 ...
- hdu 5745 La Vie en rose DP + bitset优化
http://acm.hdu.edu.cn/showproblem.php?pid=5745 这题好劲爆啊.dp容易想,但是要bitset优化,就想不到了. 先放一个tle的dp.复杂度O(n * m ...
- HDU5745-La Vie en rose-字符串dp+bitset优化
这题现场的数据出水了,暴力就能搞过. 标解是拿bitset做,转移的时候用bitset优化过的操作(与或非移位)来搞,复杂度O(N*M/w) w是字长 第一份标程的思路很清晰,然而后来会T. /*-- ...
随机推荐
- linux内存源码分析 - 伙伴系统(初始化和申请页框)
本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 之前的文章已经介绍了伙伴系统,这篇我们主要看看源码中是如何初始化伙伴系统.从伙伴系统中分配页框,返回页框于伙伴系 ...
- Java的运算符--与(&)、非(~)、或(|)、异或(^)详解
一.计算机中存储的都是补码 java也是如此: System.out.println(Integer.toBinaryString(2)); System.out.println(Integer.to ...
- ASP.NET MVC学习笔记(二)笔记
接下来我们一起了解ASP.NET MVC的最重要的核心技术,了解ASP.NET MVC的开发框架,生命周期,技术细节. 一.Routing与ASP.NET MVC生命周期 1.Routing——网址路 ...
- NOIP2002-2017普及组题解
虽然普及组一般都是暴力省一,但是有一些题目还是挺难的qwq个人觉得能进TG的题目会在前面打上'*' NOIP2002(clear) #include<bits/stdc++.h> usin ...
- 2019 The 19th Zhejiang University Programming Contest
感想: 今天三个人的状态比昨天计院校赛的状态要好很多,然而三个人都慢热体质导致签到题wa了很多发.最后虽然跟大家题数一样(6题),然而输在罚时. 只能说,水题还是刷得少,看到签到都没灵感实在不应该. ...
- Springboot 2.0.4 整合Mybatis出现异常Property 'sqlSessionFactory' or 'sqlSessionTemplate' are required
在使用Springboot 2.0.4 整合Mybatis的时候出现异常Property 'sqlSessionFactory' or 'sqlSessionTemplate' are require ...
- 牛客小白月赛6-E对弈-简单搜索
https://www.nowcoder.com/acm/contest/136/E 我搜索很差啊,看了学长代码,自己在下面手敲了一遍,感觉学长的极其精巧,把我繁琐的搜索步骤给简化了不少 其实本题想法 ...
- Substrings Sort
You are given nn strings. Each string consists of lowercase English letters. Rearrange (reorder) the ...
- BF算法和KMP算法 python实现
BF算法 def Index(s1,s2,pos = 0): """ BF算法 """ i = pos j = 0 while(i < ...
- springboot整合druid连接池、mybatis实现多数据源动态切换
demo环境: JDK 1.8 ,Spring boot 1.5.14 一 整合durid 1.添加druid连接池maven依赖 <dependency> <groupId> ...