So you want to be a 2n-aire? UVA - 10900(概率)
题意:
初始值为1, 每次回答一个问题,如果答对初始值乘2,答错归0,结束,一共有n个问题,求在最优的策略下,最后值的期望值
解析:
注意题中的一句话 每个问题的答对概率在t和1之间均匀分布 也就是说对于每个问题 都会出现一个概率p
设 p0 = 2i / d[i+1]
如果p*d[i+1] < 2i 即p < p0 也就是说 如果答这个题所带来的期望奖金少的话, 那么我们就不回答 期望奖金为2i
如果p*d[i+1] >= 2i 即p >= p0 也就是说如果答这个题所带来的期望奖金多的话, 那么就回答 期望奖金为(1+p0) / 2 * d[i+1];

p1为对于当前题 正确的概率小于p0的概率 那么就不回答
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn = , INF = 0x7fffffff;
double d[];
int main()
{
int n;
double t;
while(cin >> n >> t && n + t)
{
d[n] = << n;
for(int i = n - ; i >= ; i--)
{
double p0 = max(t, ( << i) / d[i + ]);
// cout << p0 << endl;
d[i] = ( << i) * (p0 - t) / ( - t) + d[i + ] * (p0 + ) * 0.5 * ( - p0) / ( - t);
} printf("%.3f\n", d[]);
} return ;
}
So you want to be a 2n-aire? UVA - 10900(概率)的更多相关文章
- bzoj 3811: 玛里苟斯
3811: 玛里苟斯 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 190 Solved: 95[Submit][Status][Discuss] ...
- ACM里的期望和概率问题 从入门到精通
起因:在2020年一场HDU多校赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有X,Y ...
- 分治法求2n个数的中位数
问题:设X[0:n-1]和Y[0:n-1]为两个数组,每个数组中含有n个已排好序的数.试设计一个O(logn)时间的分治算法,找出X和Y的2n个数的中位数 思想: 对于数组X[0:n-1]和Y[0:n ...
- 算法题----称硬币: 2n(并不要求n是2的幂次方)个硬币,有两个硬币重量为m+1, m-1, 其余都是m 分治 O(lgn)找出假币
Description: 有2n个硬币和一个天平,其中有一个质量是m+1, 另一个硬币质量为m-1, 其余的硬币质量都是m. 要求:O(lgn)时间找出两枚假币 注意: n不一定是2的幂次方 算法1: ...
- 给出2n+1个数,其中有2n个数出现过两次,如何用最简便的方法找出里面只出现了一次的那个数(转载)
有2n+1个数,其中有2n个数出现过两次,找出其中只出现一次的数 例如这样一组数3,3,1,2,4,2,5,5,4,其中只有1出现了1次,其他都是出现了2次,如何找出其中的1? 最简便的方法是使用异或 ...
- 【2(2N+1)魔方阵 】
/* 2(2N+1)魔方阵 */ #include<stdio.h> #include<stdlib.h> #define N 6 #define SWAP(x, y) {in ...
- n皇后问题与2n皇后问题
n皇后问题 问题描述: 如何能够在 n×n 的棋盘上放置n个皇后,使得任何一个皇后都无法直接吃掉其他的皇后 (任两个皇后都不能处于同一条横行.纵行或斜线上) 结题思路: 可采用深度优先算法,将棋盘看成 ...
- 如何快速求解第一类斯特林数--nlog^2n + nlogn
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...
- [Swift]LeetCode961. 重复 N 次的元素 | N-Repeated Element in Size 2N Array
In a array A of size 2N, there are N+1 unique elements, and exactly one of these elements is repeate ...
- mysql扩展性架构实践N库到2N 库的扩容,2变4、4变8
mysql扩展性架构实践N库到2N 库的扩容,2变4.4变8 http://geek.csdn.net/news/detail/5207058同城 沈剑 http://www.99cankao.com ...
随机推荐
- python init 方法 与 sql语句当前时间对比
def init(self,cr): tools.sql.drop_view_if_exists(cr, 'custrom_product_infomation_report') cr.execute ...
- React-使用imutable.js来管理store中的数据
reducer.js中store的数据是不能改变的,用原始的方法要手动的保证store不被修改,存在风险.imutable.js可以生成一个不可改变的对象,可以避免掉自己不小心修改掉store的情况. ...
- Caffe源码中syncedmem文件分析
Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下syncedmem文件. 1. include文件: (1).& ...
- Jquery的window.onload实现
我们都知道jquery的$(document).ready(function(){});与window.onload不同,第一个是在DOM树构建完成后触发,第二个是页面完全加载后(包括图片等资源的加载 ...
- postgresql总结
这篇博客主要对PostgreSQL进行总结,内容偏基础. 这里先附上一个PostgreSQL的中文资源:PostgreSQL 8.1 中文文档.英文不好的同学可以看看这个. 安装PostgreSQL ...
- 事务,acid,cap,paxos随笔
事务ACID四个特性: A:原子性(Atomicity)C:一致性(Consistency)I:隔离性(Isolation)D:持久性(Durability) 原子性:语句要么全执行,要么全不执行,是 ...
- 案例学Python--案例四:Django实现一个网站的雏形(1)
第一次用python的Web框架,也是第一次听说Django,参考菜鸡教程和一些博客,倒腾了半天,算是有一个雏形.数据基于昨天爬的豆瓣电影信息,详见案例三. Python版本:3.7.1 Django ...
- js中的栈、堆、队列、内存空间
栈(stack) .堆(heap). 队列(queue)是js的三种数据结构. 栈(stack) 栈的特点是"LIFO,即后进先出(Last in, first out)".数据存 ...
- dpkg:错误:正在解析文件 '/var/lib/dpkg/updates/0014' 第 0 行附近:在字段名 #padding 中有换行符问题的解决方法
解决方案如下: sudo rm /var/lib/dpkg/updates/* sudo apt-get update python@ubuntu:~/Desktop/_Welcome_.jpg.ex ...
- Nginx的location配置规则梳理
Nginx几乎是当下绝大多数公司在用的web应用服务,熟悉Nginx的配置,对于我们日常的运维工作是至关重要的,下面就Nginx的location配置进行梳理: 1)location匹配的是nginx ...