题意:

  初始值为1, 每次回答一个问题,如果答对初始值乘2,答错归0,结束,一共有n个问题,求在最优的策略下,最后值的期望值

解析:

  注意题中的一句话  每个问题的答对概率在t和1之间均匀分布  也就是说对于每个问题 都会出现一个概率p

设 p0 = 2/ d[i+1]

  如果p*d[i+1] < 2i  即p < p0  也就是说 如果答这个题所带来的期望奖金少的话, 那么我们就不回答 期望奖金为2i

  如果p*d[i+1] >= 2即p >= p0 也就是说如果答这个题所带来的期望奖金多的话, 那么就回答 期望奖金为(1+p0) / 2 * d[i+1];

  

p1为对于当前题 正确的概率小于p0的概率  那么就不回答

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn = , INF = 0x7fffffff;
double d[];
int main()
{
int n;
double t;
while(cin >> n >> t && n + t)
{
d[n] = << n;
for(int i = n - ; i >= ; i--)
{
double p0 = max(t, ( << i) / d[i + ]);
// cout << p0 << endl;
d[i] = ( << i) * (p0 - t) / ( - t) + d[i + ] * (p0 + ) * 0.5 * ( - p0) / ( - t);
} printf("%.3f\n", d[]);
} return ;
}

So you want to be a 2n-aire? UVA - 10900(概率)的更多相关文章

  1. bzoj 3811: 玛里苟斯

    3811: 玛里苟斯 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 190  Solved: 95[Submit][Status][Discuss] ...

  2. ACM里的期望和概率问题 从入门到精通

    起因:在2020年一场HDU多校赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有X,Y ...

  3. 分治法求2n个数的中位数

    问题:设X[0:n-1]和Y[0:n-1]为两个数组,每个数组中含有n个已排好序的数.试设计一个O(logn)时间的分治算法,找出X和Y的2n个数的中位数 思想: 对于数组X[0:n-1]和Y[0:n ...

  4. 算法题----称硬币: 2n(并不要求n是2的幂次方)个硬币,有两个硬币重量为m+1, m-1, 其余都是m 分治 O(lgn)找出假币

    Description: 有2n个硬币和一个天平,其中有一个质量是m+1, 另一个硬币质量为m-1, 其余的硬币质量都是m. 要求:O(lgn)时间找出两枚假币 注意: n不一定是2的幂次方 算法1: ...

  5. 给出2n+1个数,其中有2n个数出现过两次,如何用最简便的方法找出里面只出现了一次的那个数(转载)

    有2n+1个数,其中有2n个数出现过两次,找出其中只出现一次的数 例如这样一组数3,3,1,2,4,2,5,5,4,其中只有1出现了1次,其他都是出现了2次,如何找出其中的1? 最简便的方法是使用异或 ...

  6. 【2(2N+1)魔方阵 】

    /* 2(2N+1)魔方阵 */ #include<stdio.h> #include<stdlib.h> #define N 6 #define SWAP(x, y) {in ...

  7. n皇后问题与2n皇后问题

    n皇后问题 问题描述: 如何能够在 n×n 的棋盘上放置n个皇后,使得任何一个皇后都无法直接吃掉其他的皇后 (任两个皇后都不能处于同一条横行.纵行或斜线上) 结题思路: 可采用深度优先算法,将棋盘看成 ...

  8. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  9. [Swift]LeetCode961. 重复 N 次的元素 | N-Repeated Element in Size 2N Array

    In a array A of size 2N, there are N+1 unique elements, and exactly one of these elements is repeate ...

  10. mysql扩展性架构实践N库到2N 库的扩容,2变4、4变8

    mysql扩展性架构实践N库到2N 库的扩容,2变4.4变8 http://geek.csdn.net/news/detail/5207058同城 沈剑 http://www.99cankao.com ...

随机推荐

  1. 前后端交互json字符串

    //将需要的参数转成json字符串,然后用utf-8编码 var obj = encodeURIComponent(JSON.stringify(this.categories),"utf- ...

  2. js求数组的最大值--奇技淫巧和笨方法

    写这篇文章的原因 我目前做的项目很少用到算法,于是这方面的东西自然就有点儿生疏.最近的一次编码中遇到了从数组中获取最大值的需求,当时我不自觉的想到了js的sort()函数,现在想来真是有些“罪过”,当 ...

  3. Luogu P1514 引水入城

    我承认我有点懒(洛谷已经发过题解了,但我发誓要坚持写博客) 这道题坑了我3天…… 首先一看就与染色问题类似,果断BFS(写DFS炸了) 先将最上面(靠近水)的一行全部扔进队列里,做一遍BFS 再对最下 ...

  4. 2091: [Poi2010]The Minima Game

    2091: [Poi2010]The Minima Game 链接 分析: 首先排序后,一定是选的连续的一段. f[i]表示前i个位置,先手-后手的最大得分. 那么考虑第i个位置是否选,如果选,先手选 ...

  5. bootstrap datetimepicker 格式化yyyymmdd时,无法读取yyyymmdd格式

    不知为何,java程序员爱用yyyymmdd格式化日期?导致bootstrap datetimepicker无法解析正确的日期 发现js中yyyymmdd不是正常能够解析的日期 查看datetimep ...

  6. windows下docker启动.net core mvc随手记

    docker基本命令: 查看当前的版本docker--version查看本地所有镜像:docker images查看当前正在运行的所有容器docker ps停止某个容器:docker stop 容器I ...

  7. Webpack 2 视频教程 003 - Webpack 项目初始化

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  8. host大法之GitHub上不去

    dns解析慢,github上不去,慢 修改host. windows下路径为:C:\Windows\System32\drivers\etc\hosts Linux下路径:/etc/hosts 加入: ...

  9. JavaScript术语:shim 和 polyfill

    转自:https://www.html.cn/archives/8339 在学习和使用 JavaScript 的时候,我们会经常碰到两个术语:shim 和 polyfill.它们有许多定义和解释,意思 ...

  10. app推广及主要代码

    app推广:      一.基本情况       我们把推广和调研都放在了一起,主要是调研,主要通过调查问卷和直接访问的方式,让调查的人能够看到我们app的主要功能, 然后做出评价和对此改善的意见.调 ...