题意:

  初始值为1, 每次回答一个问题,如果答对初始值乘2,答错归0,结束,一共有n个问题,求在最优的策略下,最后值的期望值

解析:

  注意题中的一句话  每个问题的答对概率在t和1之间均匀分布  也就是说对于每个问题 都会出现一个概率p

设 p0 = 2/ d[i+1]

  如果p*d[i+1] < 2i  即p < p0  也就是说 如果答这个题所带来的期望奖金少的话, 那么我们就不回答 期望奖金为2i

  如果p*d[i+1] >= 2即p >= p0 也就是说如果答这个题所带来的期望奖金多的话, 那么就回答 期望奖金为(1+p0) / 2 * d[i+1];

  

p1为对于当前题 正确的概率小于p0的概率  那么就不回答

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn = , INF = 0x7fffffff;
double d[];
int main()
{
int n;
double t;
while(cin >> n >> t && n + t)
{
d[n] = << n;
for(int i = n - ; i >= ; i--)
{
double p0 = max(t, ( << i) / d[i + ]);
// cout << p0 << endl;
d[i] = ( << i) * (p0 - t) / ( - t) + d[i + ] * (p0 + ) * 0.5 * ( - p0) / ( - t);
} printf("%.3f\n", d[]);
} return ;
}

So you want to be a 2n-aire? UVA - 10900(概率)的更多相关文章

  1. bzoj 3811: 玛里苟斯

    3811: 玛里苟斯 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 190  Solved: 95[Submit][Status][Discuss] ...

  2. ACM里的期望和概率问题 从入门到精通

    起因:在2020年一场HDU多校赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有X,Y ...

  3. 分治法求2n个数的中位数

    问题:设X[0:n-1]和Y[0:n-1]为两个数组,每个数组中含有n个已排好序的数.试设计一个O(logn)时间的分治算法,找出X和Y的2n个数的中位数 思想: 对于数组X[0:n-1]和Y[0:n ...

  4. 算法题----称硬币: 2n(并不要求n是2的幂次方)个硬币,有两个硬币重量为m+1, m-1, 其余都是m 分治 O(lgn)找出假币

    Description: 有2n个硬币和一个天平,其中有一个质量是m+1, 另一个硬币质量为m-1, 其余的硬币质量都是m. 要求:O(lgn)时间找出两枚假币 注意: n不一定是2的幂次方 算法1: ...

  5. 给出2n+1个数,其中有2n个数出现过两次,如何用最简便的方法找出里面只出现了一次的那个数(转载)

    有2n+1个数,其中有2n个数出现过两次,找出其中只出现一次的数 例如这样一组数3,3,1,2,4,2,5,5,4,其中只有1出现了1次,其他都是出现了2次,如何找出其中的1? 最简便的方法是使用异或 ...

  6. 【2(2N+1)魔方阵 】

    /* 2(2N+1)魔方阵 */ #include<stdio.h> #include<stdlib.h> #define N 6 #define SWAP(x, y) {in ...

  7. n皇后问题与2n皇后问题

    n皇后问题 问题描述: 如何能够在 n×n 的棋盘上放置n个皇后,使得任何一个皇后都无法直接吃掉其他的皇后 (任两个皇后都不能处于同一条横行.纵行或斜线上) 结题思路: 可采用深度优先算法,将棋盘看成 ...

  8. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  9. [Swift]LeetCode961. 重复 N 次的元素 | N-Repeated Element in Size 2N Array

    In a array A of size 2N, there are N+1 unique elements, and exactly one of these elements is repeate ...

  10. mysql扩展性架构实践N库到2N 库的扩容,2变4、4变8

    mysql扩展性架构实践N库到2N 库的扩容,2变4.4变8 http://geek.csdn.net/news/detail/5207058同城 沈剑 http://www.99cankao.com ...

随机推荐

  1. 网易云音乐 歌词制作软件 BesLyric (最新版本下载)

    导读 BesLyric , 一款专门制作 网易云音乐 LRC 滚动歌词的软件! 搜索.下载.制作 歌词更方便! 哈哈,喜欢网易云音乐,又愁于制作歌词的童鞋有福啦!Beslyric 为你排忧解难! 本文 ...

  2. [02] SpringBoot的项目属性配置

    1.application.properties 简述 配置文件的使用和调整都非常方便,直接在项目默认的classpath下的application.properties文件中做调整即可.例如Spri ...

  3. Python 爬取 11 万 Java 程序员信息竟有这些重大发现!

    一提到程序猿,我们的脑子里就会出现这样的画面: 或者这样的画面: 心头萦绕的字眼是:秃头.猝死.眼镜.黑白 T 恤.钢铁直男-- 而真实的程序猿们,是每天要和无数数据,以及数十种编程语言打交道.上能手 ...

  4. SQLSERVER 中sp_who, sp_who2和sp_who3(转载)

    sp_who可以返回如下信息: (可选参数LoginName, 或active代表活动会话数)Spid (系统进程ID)status (进程状态)loginame (用户登录名)hostname(用户 ...

  5. Luogu P4053 [JSOI2007]建筑抢修

    一道贪心题,看数据范围就知道要套一个数据结构上去. 别走啊不是什么很高级的数据结构 考虑最朴素的想法,按建筑的抢修时间排序并先拿小的 然后随便想想都可以找到一堆反例 所以我们就直接考虑模拟这个过程,按 ...

  6. 2.RapidIO串行物理层的包与控制符号

    转自https://www.cnblogs.com/liujinggang/p/9932150.html 一.RapidIO串行物理层背景介绍 上篇博文提到RapidIO的物理层支持串行物理层与并行物 ...

  7. 运行supervisord -c /etc/supervisor/supervisord.conf 出错,解决办法

    坑都让我踩了...... 1 supervisord -c /etc/supervisor/supervisord.conf 什么意思? 答:手动启动:supervisord        具体详见 ...

  8. [2019校招] - Java多线程面试题总结

    Object 的 wait()和notify() 方法 下图为线程状态的图: Object 对象中的 wait()和notify()是用来实现实现等待 / 通知模式.其中等待状态和阻塞状态是不同的.等 ...

  9. 【亲测有效】运行docker ps 出现Got permission denied问题的解决方案

    问题描述 今天在运行 docker ps 命令的时候出现如下问题: Got permission denied while trying to connect to the Docker daemon ...

  10. ssh实现办公室电脑连接家中的电脑

    友情提示:如果您不知道您家路由器管理页面的密码,请您忽略此文. 问题背景: 家中有台笔记本电脑,它是通过家中的路由器与外界联网的,这时,我想通过ssh服务让公司的电脑能连上我家中的笔记本. 可以画个图 ...