参考自:https://spark.apache.org/docs/latest/submitting-applications.html

常见的语法:

./bin/spark-submit \
  --class <main-class>
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf <key>=<value> \
  ... # other options
  <application-jar> \
  [application-arguments]

举几个常用的用法例子:

# Run application locally on 8 cores
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master local[8] \
  /path/to/examples.jar \
  100 # Run on a Spark Standalone cluster in client deploy mode
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000 # Run on a Spark Standalone cluster in cluster deploy mode with supervise
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --deploy-mode cluster
  --supervise
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000 # Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master yarn-cluster \  # can also be `yarn-client` for client mode
  --executor-memory 20G \
  --num-executors 50 \
  /path/to/examples.jar \
  1000 # Run a Python application on a Spark Standalone cluster
./bin/spark-submit \
  --master spark://207.184.161.138:7077 \
  examples/src/main/python/pi.py \
  1000

 

1、一引起重要的参数说明

(1)—-class: 主类,即main函数所有的类

(2)—- master : master的URL,见下面的详细说明。

(3)—-deploy-mode:client和cluster2种模式

(4)—-conf:指定key=value形式的配置

2、关于jar包

hadoop和spark的配置会被自动加载到SparkContext,因此,提交application时只需要提交用户的代码以及其它依赖包,这有2种做法:

(1)将用户代码打包成jar,然后在提交application时使用—-jar来添加依赖jar包

(2)将用户代码与依赖一起打包成一个大包 assembly jar (or “uber” jar)

关于依赖关系更详细的说明:

When using spark-submit, the application jar along with any jars included with the --jars option will be automatically transferred to the cluster. Spark uses the following URL scheme to allow different strategies for disseminating jars:

  • file: - Absolute paths and file:/ URIs are served by the driver’s HTTP file server, and every executor pulls the file from the driver HTTP server.

  • hdfs:http:https:ftp: - these pull down files and JARs from the URI as expected

  • local: - a URI starting with local:/ is expected to exist as a local file on each worker node. This means that no network IO will be incurred, and works well for large files/JARs that are pushed to each worker, or shared via NFS, GlusterFS, etc.

Note that JARs and files are copied to the working directory for each SparkContext on the executor nodes. This can use up a significant amount of space over time and will need to be cleaned up. With YARN, cleanup is handled automatically, and with Spark standalone, automatic cleanup can be configured with the spark.worker.cleanup.appDataTtl property.

Users may also include any other dependencies by supplying a comma-delimited list of maven coordinates with --packages. All transitive dependencies will be handled when using this command. Additional repositories (or resolvers in SBT) can be added in a comma-delimited fashion with the flag --repositories. These commands can be used with pysparkspark-shell, and spark-submit to include Spark Packages.

For Python, the equivalent --py-files option can be used to distribute .egg.zip and .py libraries to executors.

 

3、关于master的值

(1)对于standalone模式,是spark://ip:port/的形式

(2)对于yarn,有yarn-cluster与yarn-cluster2种

(3)对于mesos,目前只有client选项

(4)除此之外,还有local[N]这种用于本地调试的选项

Master URL Meaning
local Run Spark locally with one worker thread (i.e. no parallelism at all).
local[K] Run Spark locally with K worker threads (ideally, set this to the number of cores on your machine).
local[*] Run Spark locally with as many worker threads as logical cores on your machine.
spark://HOST:PORT Connect to the given Spark standalone cluster master. The port must be whichever one your master is configured to use, which is 7077 by default.
mesos://HOST:PORT Connect to the given Mesos cluster. The port must be whichever one your is configured to use, which is 5050 by default. Or, for a Mesos cluster using ZooKeeper, use mesos://zk://....
yarn-client Connect to a YARN cluster in client mode. The cluster location will be found based on the HADOOP_CONF_DIR or YARN_CONF_DIR variable.
yarn-cluster Connect to a YARN cluster in cluster mode. The cluster location will be found based on the HADOOP_CONF_DIR or YARN_CONF_DIR variable.

 

4、关于client与cluster模式

A common deployment strategy is to submit your application from a gateway machine that is physically co-located with your worker machines (e.g. Master node in a standalone EC2 cluster). In this setup, client mode is appropriate. In client mode, the driver is launched directly within the spark-submit process which acts as a client to the cluster. The input and output of the application is attached to the console. Thus, this mode is especially suitable for applications that involve the REPL (e.g. Spark shell).

Alternatively, if your application is submitted from a machine far from the worker machines (e.g. locally on your laptop), it is common to usecluster mode to minimize network latency between the drivers and the executors. Note that cluster mode is currently not supported for Mesos clusters. Currently only YARN supports cluster mode for Python applications.

 

5、加载本地的配置文件

The spark-submit script can load default Spark configuration values from a properties file and pass them on to your application. By default it will read options from conf/spark-defaults.conf in the Spark directory. For more detail, see the section on loading default configurations.

Loading default Spark configurations this way can obviate the need for certain flags to spark-submit. For instance, if the spark.master property is set, you can safely omit the --master flag from spark-submit. In general, configuration values explicitly set on a SparkConf take the highest precedence, then flags passed to spark-submit, then values in the defaults file.

If you are ever unclear where configuration options are coming from, you can print out fine-grained debugging information by running spark-submit with the --verbose option.

 

 

附spark-submit的完整命令:

hadoop@gdc-nn01-logtest:~/spark$ bin/spark-submit
Usage: spark-submit [options]  [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...] Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of local jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor.   --conf PROP=VALUE           Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.   --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 512M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.   --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).   --proxy-user NAME           User to impersonate when submitting the application.   --help, -h                  Show this help message and exit
  --verbose, -v               Print additional debug output
  --version,                  Print the version of current Spark  Spark standalone with cluster deploy mode only:
  --driver-cores NUM          Cores for driver (Default: 1).  Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.  Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.  Spark standalone and YARN only:
  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
                              or all available cores on the worker in standalone mode)  YARN-only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  --num-executors NUM         Number of executors to launch (Default: 2).
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically. 15/07/22 11:03:25 INFO util.Utils: Shutdown hook called

spark提交应用的方法(spark-submit)的更多相关文章

  1. spark提交任务的三种的方法

    在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有三种: 第一种: 通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参考资料都是已这 ...

  2. spark提交任务的两种的方法

    在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有两种(我所知道的): 第一种: 通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参 ...

  3. Spark学习(四) -- Spark作业提交

    标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.s ...

  4. spark提交任务的流程

    1.spark提交流程 sparkContext其实是与一个集群建立一个链接,当你停掉它之后 就会和集群断开链接,则属于这个资源的Excutor就会释放掉了,Driver 向Master申请资源,Ma ...

  5. spark提交模式

    spark基本的提交语句: ./bin/spark-submit \ --class <main-class> \ --master <master-url> \ --depl ...

  6. spark提交命令 spark-submit 的参数 executor-memory、executor-cores、num-executors、spark.default.parallelism分析

    转载:https://blog.csdn.net/zimiao552147572/article/details/96482120 nohup spark-submit --master yarn - ...

  7. 提交jar作业到spark上运行

    1.引入spark包:spark-assembly-1.4.0-hadoop2.6.0,在spark的lib目录下 File-->project structure 2.用IDEA建立一个sca ...

  8. Spark调研笔记第2篇 - 怎样通过Sparkclient向Spark提交任务

    在上篇笔记的基础上,本文介绍Sparkclient的基本配置及Spark任务提交方式. 1. Sparkclient及基本配置 从Spark官网下载的pre-built包中集成了Sparkclient ...

  9. Spark With Mongodb 实现方法及error code -5, 6, 13127解决方案

    1.spark mongo 读取 val rdd = MongoSpark.builder().sparkSession(spark).pipeline(Seq(`match`(regex(" ...

随机推荐

  1. Impala与HBase整合

    不多说,直接上干货! Impala可以通过Hive外部表方式和HBase进行整合,步骤如下: • 步骤1:创建hbase 表,向表中添加数据 create 'test_info', 'info' pu ...

  2. 全面了解Linux下Proc文件系统

    全面了解Linux下Proc文件系统   Proc是一个虚拟文件系统,在Linux系统中它被挂载于/proc目录之上.Proc有多个功能 ,这其中包括用户可以通过它访问内核信息或用于排错,这其中一个非 ...

  3. java knowledge record

    javax.accessibility.Accessible       给予private  或者 final 变量可以改变的机会

  4. C++ 补课 (三)

    1,枚举类型 —— 下标自0开始 enum 枚举类型名 { 常数表 } 2,C++ 的异常处理机制实际上是一种运行时通知机制 3,delete p;只是删除指针p指向内存区,并不是删除指针p,所以p还 ...

  5. Java_Learn

    20180417 集合类 Collection 如果是实现了list接口的集合类,具备的特点是有序,可重复: 如果是实现了set接口的集合类,具备的特点是无序,不可重复: Collection中的方法 ...

  6. hdu 3294 Girls&#39; research

    #include<stdio.h> #include<string.h> #define MAX 200020 char s[MAX],ss[MAX*2],str[2]; in ...

  7. Hadoop权威指南学习笔记三

    HDFS简单介绍 声明:本文是本人基于Hadoop权威指南学习的一些个人理解和笔记,仅供学习參考.有什么不到之处还望指出,一起学习一起进步. 转载请注明:http://blog.csdn.net/my ...

  8. 从USB闪存驱动器启动 Hiren的BootCD --制作U盘启动盘

    从USB闪存驱动器启动 Hiren的BootCD 原文  http://www.hirensbootcd.org/usb-booting/ 本文基本上是翻译而来 要从USB闪存驱动器启动Hiren的B ...

  9. mahout的特性(三)

    mahout的特性 虽然在开源领域中相对较为年轻,但 Mahout 已经提供了大量功能,特别是在集群和CF 方面. Mahout 的主要特性包括: Taste CF.Taste 是 Sean Owen ...

  10. JSP中使用EL表达式

    EL表达式 :EL 全名为Expression Language,就是为了替代<%= %>脚本表达式. EL主要作用: 获取数据: EL表达式主要用于替换JSP页面中的脚本表达式,以从各种 ...