参考自:https://spark.apache.org/docs/latest/submitting-applications.html

常见的语法:

./bin/spark-submit \
  --class <main-class>
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf <key>=<value> \
  ... # other options
  <application-jar> \
  [application-arguments]

举几个常用的用法例子:

# Run application locally on 8 cores
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master local[8] \
  /path/to/examples.jar \
  100 # Run on a Spark Standalone cluster in client deploy mode
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000 # Run on a Spark Standalone cluster in cluster deploy mode with supervise
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --deploy-mode cluster
  --supervise
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000 # Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master yarn-cluster \  # can also be `yarn-client` for client mode
  --executor-memory 20G \
  --num-executors 50 \
  /path/to/examples.jar \
  1000 # Run a Python application on a Spark Standalone cluster
./bin/spark-submit \
  --master spark://207.184.161.138:7077 \
  examples/src/main/python/pi.py \
  1000

 

1、一引起重要的参数说明

(1)—-class: 主类,即main函数所有的类

(2)—- master : master的URL,见下面的详细说明。

(3)—-deploy-mode:client和cluster2种模式

(4)—-conf:指定key=value形式的配置

2、关于jar包

hadoop和spark的配置会被自动加载到SparkContext,因此,提交application时只需要提交用户的代码以及其它依赖包,这有2种做法:

(1)将用户代码打包成jar,然后在提交application时使用—-jar来添加依赖jar包

(2)将用户代码与依赖一起打包成一个大包 assembly jar (or “uber” jar)

关于依赖关系更详细的说明:

When using spark-submit, the application jar along with any jars included with the --jars option will be automatically transferred to the cluster. Spark uses the following URL scheme to allow different strategies for disseminating jars:

  • file: - Absolute paths and file:/ URIs are served by the driver’s HTTP file server, and every executor pulls the file from the driver HTTP server.

  • hdfs:http:https:ftp: - these pull down files and JARs from the URI as expected

  • local: - a URI starting with local:/ is expected to exist as a local file on each worker node. This means that no network IO will be incurred, and works well for large files/JARs that are pushed to each worker, or shared via NFS, GlusterFS, etc.

Note that JARs and files are copied to the working directory for each SparkContext on the executor nodes. This can use up a significant amount of space over time and will need to be cleaned up. With YARN, cleanup is handled automatically, and with Spark standalone, automatic cleanup can be configured with the spark.worker.cleanup.appDataTtl property.

Users may also include any other dependencies by supplying a comma-delimited list of maven coordinates with --packages. All transitive dependencies will be handled when using this command. Additional repositories (or resolvers in SBT) can be added in a comma-delimited fashion with the flag --repositories. These commands can be used with pysparkspark-shell, and spark-submit to include Spark Packages.

For Python, the equivalent --py-files option can be used to distribute .egg.zip and .py libraries to executors.

 

3、关于master的值

(1)对于standalone模式,是spark://ip:port/的形式

(2)对于yarn,有yarn-cluster与yarn-cluster2种

(3)对于mesos,目前只有client选项

(4)除此之外,还有local[N]这种用于本地调试的选项

Master URL Meaning
local Run Spark locally with one worker thread (i.e. no parallelism at all).
local[K] Run Spark locally with K worker threads (ideally, set this to the number of cores on your machine).
local[*] Run Spark locally with as many worker threads as logical cores on your machine.
spark://HOST:PORT Connect to the given Spark standalone cluster master. The port must be whichever one your master is configured to use, which is 7077 by default.
mesos://HOST:PORT Connect to the given Mesos cluster. The port must be whichever one your is configured to use, which is 5050 by default. Or, for a Mesos cluster using ZooKeeper, use mesos://zk://....
yarn-client Connect to a YARN cluster in client mode. The cluster location will be found based on the HADOOP_CONF_DIR or YARN_CONF_DIR variable.
yarn-cluster Connect to a YARN cluster in cluster mode. The cluster location will be found based on the HADOOP_CONF_DIR or YARN_CONF_DIR variable.

 

4、关于client与cluster模式

A common deployment strategy is to submit your application from a gateway machine that is physically co-located with your worker machines (e.g. Master node in a standalone EC2 cluster). In this setup, client mode is appropriate. In client mode, the driver is launched directly within the spark-submit process which acts as a client to the cluster. The input and output of the application is attached to the console. Thus, this mode is especially suitable for applications that involve the REPL (e.g. Spark shell).

Alternatively, if your application is submitted from a machine far from the worker machines (e.g. locally on your laptop), it is common to usecluster mode to minimize network latency between the drivers and the executors. Note that cluster mode is currently not supported for Mesos clusters. Currently only YARN supports cluster mode for Python applications.

 

5、加载本地的配置文件

The spark-submit script can load default Spark configuration values from a properties file and pass them on to your application. By default it will read options from conf/spark-defaults.conf in the Spark directory. For more detail, see the section on loading default configurations.

Loading default Spark configurations this way can obviate the need for certain flags to spark-submit. For instance, if the spark.master property is set, you can safely omit the --master flag from spark-submit. In general, configuration values explicitly set on a SparkConf take the highest precedence, then flags passed to spark-submit, then values in the defaults file.

If you are ever unclear where configuration options are coming from, you can print out fine-grained debugging information by running spark-submit with the --verbose option.

 

 

附spark-submit的完整命令:

hadoop@gdc-nn01-logtest:~/spark$ bin/spark-submit
Usage: spark-submit [options]  [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...] Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of local jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor.   --conf PROP=VALUE           Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.   --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 512M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.   --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).   --proxy-user NAME           User to impersonate when submitting the application.   --help, -h                  Show this help message and exit
  --verbose, -v               Print additional debug output
  --version,                  Print the version of current Spark  Spark standalone with cluster deploy mode only:
  --driver-cores NUM          Cores for driver (Default: 1).  Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.  Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.  Spark standalone and YARN only:
  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
                              or all available cores on the worker in standalone mode)  YARN-only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  --num-executors NUM         Number of executors to launch (Default: 2).
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically. 15/07/22 11:03:25 INFO util.Utils: Shutdown hook called

spark提交应用的方法(spark-submit)的更多相关文章

  1. spark提交任务的三种的方法

    在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有三种: 第一种: 通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参考资料都是已这 ...

  2. spark提交任务的两种的方法

    在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有两种(我所知道的): 第一种: 通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参 ...

  3. Spark学习(四) -- Spark作业提交

    标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.s ...

  4. spark提交任务的流程

    1.spark提交流程 sparkContext其实是与一个集群建立一个链接,当你停掉它之后 就会和集群断开链接,则属于这个资源的Excutor就会释放掉了,Driver 向Master申请资源,Ma ...

  5. spark提交模式

    spark基本的提交语句: ./bin/spark-submit \ --class <main-class> \ --master <master-url> \ --depl ...

  6. spark提交命令 spark-submit 的参数 executor-memory、executor-cores、num-executors、spark.default.parallelism分析

    转载:https://blog.csdn.net/zimiao552147572/article/details/96482120 nohup spark-submit --master yarn - ...

  7. 提交jar作业到spark上运行

    1.引入spark包:spark-assembly-1.4.0-hadoop2.6.0,在spark的lib目录下 File-->project structure 2.用IDEA建立一个sca ...

  8. Spark调研笔记第2篇 - 怎样通过Sparkclient向Spark提交任务

    在上篇笔记的基础上,本文介绍Sparkclient的基本配置及Spark任务提交方式. 1. Sparkclient及基本配置 从Spark官网下载的pre-built包中集成了Sparkclient ...

  9. Spark With Mongodb 实现方法及error code -5, 6, 13127解决方案

    1.spark mongo 读取 val rdd = MongoSpark.builder().sparkSession(spark).pipeline(Seq(`match`(regex(" ...

随机推荐

  1. #学习笔记#——JavaScript 数组部分编程(一)

    来自牛客网的js编程题 1.移除数组 arr 中的所有值与 item 相等的元素.不要直接修改数组 arr,结果返回新的数组 function remove(arr, item) { if(!Arra ...

  2. 利用日志文件恢复MYSQL数据库

    利用日志文件恢复MYSQL数据库 650) this.width=650;" onclick='window.open("http://blog.51cto.com/viewpic ...

  3. words2

    餐具:coffee pot 咖啡壶coffee cup 咖啡杯paper towel 纸巾napkin 餐巾table cloth 桌布tea -pot 茶壶tea set 茶具tea tray 茶盘 ...

  4. 洛谷 P3505 [POI2010]TEL-Teleportation

    P3505 [POI2010]TEL-Teleportation 题目描述 King Byteasar is the ruler of the whole solar system that cont ...

  5. popover弹出框

    <style> #view{width: 300px;height: 200px;border: 1px solid red;} </style> 以上是为了viewport更 ...

  6. C++面试必备,概念解析

    1.C和C++中struct有什么差别? 1> C++中的struct类似于class,有变量.有构造函数.虚函数等.有继承,多态等类的特征: 2> C中的struct仅仅有变量,不能有函 ...

  7. elasticsearch节点间通信的基础transport

    在前一篇中我们分析了cluster的一些元素.接下来的章节会对cluster的运作机制做详细分析.本节先分析一些transport,它是cluster间通信的基础.它有两种实现,一种是基于netty实 ...

  8. Redis原理(二)

    运维 快照使用子进程是通过一个子进程完成, 它会比较的浪费资源的操作. 1.遍历整个内存,会增加系统负担. 2.io操作,降低redis性能. 一般都是主备,备用的进行持久化. Redis 4.0混合 ...

  9. zeromq and jzmq

    install c test install jzmq java test Storm UI Cluster Summary Version Nimbus uptime Supervisors Use ...

  10. 基于zookeeper实现的分布式锁

    基于zookeeper实现的分布式锁 2011-01-27 • 技术 • 7 条评论 • jiacheo •14,941 阅读 A distributed lock base on zookeeper ...