独木桥

怎么说呢

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; const int N = ;
int n, l, pos[N], maxx = , minn = ; int main(){
scanf("%d%d", &l, &n);
for(int i = ; i <= n; i++) scanf("%d", &pos[i]);
sort(pos + , pos + n + );
for(int i = ; i <= n; i++)
if(pos[i] <= ( + l) / ) maxx = max(maxx, l - pos[i] + ), minn = max(pos[i], minn);
else maxx = max(maxx, pos[i]), minn = max(minn, l - pos[i] + );
printf("%d %d", minn, maxx);
return ;
}

传纸条 & 方格取数

多维dp的应用

code传纸条

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; const int N = ;
int n, m, a[N][N], dp[N][N][N][N]; inline int myMax(int u, int v, int x, int y){
int ret = u;
ret = max(ret, v);
ret = max(ret, x);
ret = max(ret, y);
return ret;
} int main(){
scanf("%d%d", &m, &n);
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
scanf("%d", &a[i][j]);
dp[][][][] = a[][];
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
for(int k = ; k <= m; k++)
for(int l = ; l <= n; l++){
if(i == && j == ) continue;
dp[i][j][k][l] = myMax(dp[i - ][j][k - ][l], dp[i][j - ][k - ][l],
dp[i - ][j][k][l - ], dp[i][j - ][k][l - ])
+ a[i][j] + a[k][l];
if(i == k && j == l)
dp[i][j][k][l] -= a[i][j];
}
printf("%d", dp[m][n][m][n]);
return ;
}

code方格取数

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; const int N = ;
int n, a[N][N], dp[N][N][N][N]; inline int myMax(int u, int v, int x, int y){
int ret = u;
ret = max(ret, v);
ret = max(ret, x);
ret = max(ret, y);
return ret;
} int main(){
scanf("%d", &n);
int x, y, w;
while(scanf("%d%d%d", &x, &y, &w), x + y + w)
a[x][y] = w;
// dp[1][1][1][1] = a[1][1];
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
for(int k = ; k <= n; k++)
for(int l = ; l <= n; l++){
// if(i == k && j == l && i != n && j != n) continue;
dp[i][j][k][l] = myMax(dp[i - ][j][k - ][l], dp[i][j - ][k - ][l],
dp[i - ][j][k][l - ], dp[i][j - ][k][l - ])
+ a[i][j] + a[k][l];
if(i == k && j == l )
dp[i][j][k][l] -= a[i][j];
}
printf("%d", dp[n][n][n][n]);
return ;
}

矩阵取数游戏

问题识破 + dp + 高精度

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
using namespace std; inline int read(){
int i = , f = ; char ch = getchar();
for(; (ch < '' || ch > '') && ch != '-'; ch = getchar());
if(ch == '-') f = -, ch = getchar();
for(; ch >= '' && ch <= ''; ch = getchar())
i = (i << ) + (i << ) + (ch - '');
return i * f;
} const int N = ;
int n, m; struct bign{
int len, s[N];
bign():len(){memset(s, , sizeof s);}
inline void clear(){
while(len > && s[len] == ) len--;
}
inline bign operator * (const bign &u) const{
bign ret;
ret.len = len + u.len + ;
for(int i = ; i <= len; i++)
for(int j = ; j <= u.len; j++)
ret.s[i + j - ] += s[i] * u.s[j];
for(int i = ; i <= ret.len; i++)
if(ret.s[i] >= ){
ret.s[i + ] += ret.s[i] / ;
ret.s[i] %= ;
}
ret.clear();
return ret;
}
inline void print(){
clear();
for(int i = len; i >= ; i--)
putchar(s[i] + '');
}
inline bool operator > (const bign &u) const{
if(len != u.len) return len > u.len;
for(int i = len; i >= ; i--)
if(s[i] != u.s[i]) return s[i] > u.s[i];
return false;
}
inline bign operator + (const bign &u) const{
bign ret;
ret.len = ;
int i, g;
for(i = , g = ; g || i <= max(len, u.len); i++){
ret.s[++ret.len] = g;
if(i <= len) ret.s[ret.len] += s[i];
if(i <= u.len) ret.s[ret.len] += u.s[i];
g = ret.s[ret.len] / ;
ret.s[ret.len] %= ;
}
ret.clear();
return ret;
}
}pow2[N][N], f[N][N], big2, ans, ret, a[N], big0; inline bign newBign(int x){
bign ret;
ret.len = ;
while(x){
ret.s[++ret.len] = x % ;
x /= ;
}
if(ret.len == ) ret.len = ;
return ret;
} inline void initPow(){
for(int i = ; i <= m; i++)
for(int j = ; j <= m; j++)
pow2[i][j] = pow2[i][j - ] + pow2[i][j - ];
} inline bign max(bign a, bign b){
return a > b ? a : b;
} int main(){
n = read(), m = read();
ans = big0 = newBign(); big2 = newBign();
for(int t = ; t <= n; t++){
ret = big0;
for(int i = ; i <= m; i++) pow2[i][] = newBign(read());
initPow();
for(int i = ; i <= m; i++)
for(int j = ; j <= m; j++)
f[i][j] = big0;
for(int i = ; i <= m; i++)
for(int j = ; i + j <= m; j++){
if(i > ) f[i][j] = max(f[i - ][j] + pow2[i][i + j], f[i][j]);
if(j > ) f[i][j] = max(f[i][j - ] + pow2[m - j + ][i + j], f[i][j]);
}
for(int i = ; i <= m; i++)
ret = max(ret, f[i][m - i]);
ans = ans + ret;
}
ans.print();
return ;
}

铺地毯

怎么说呢

#include<iostream>
#include<cstdio>
using namespace std; const int N = 1e4 + ;
int n, x1[N], y1[N], l[N], w[N], x, y, ans = -; int main(){
scanf("%d", &n);
for(int i = ; i <= n; i++)
scanf("%d%d%d%d", &x1[i], &y1[i], &l[i], &w[i]);
scanf("%d%d", &x, &y);
for(int i = n; i >= ; i--){
if(x1[i] <= x && x <= x1[i] + l[i] - && y1[i] <= y && y <= y1[i] + w[i] - ){
ans = i;
break;
}
}
printf("%d", ans);
return ;
}

noip刷题记录 20170823的更多相关文章

  1. noip刷题记录 20170818

    天天爱跑步 lca + 树上差分 #include<iostream> #include<cstdio> #include<cstdlib> #include< ...

  2. PE刷题记录

    PE刷题记录 PE60 / 20%dif 这道题比较坑爹. 所有可以相连的素数可以构成一张图,建出这张图,在其中找它的大小为5的团.注意上界的估算,大概在1W以内.1W内有1229个素数,处理出这些素 ...

  3. leetcode刷题记录--js

    leetcode刷题记录 两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但 ...

  4. Leetcode刷题记录(python3)

    Leetcode刷题记录(python3) 顺序刷题 1~5 ---1.两数之和 ---2.两数相加 ---3. 无重复字符的最长子串 ---4.寻找两个有序数组的中位数 ---5.最长回文子串 6- ...

  5. 刷题记录:[HarekazeCTF2019]encode_and_encode

    目录 刷题记录:[HarekazeCTF2019]encode_and_encode 一.知识点 JSON转义字符绕过 php伪协议 刷题记录:[HarekazeCTF2019]encode_and_ ...

  6. 刷题记录:[De1CTF 2019]Giftbox && Comment

    目录 刷题记录:[De1CTF 2019]Giftbox && Comment 一.知识点 1.sql注入 && totp 2.RCE 3.源码泄露 4.敏感文件读取 ...

  7. 刷题记录:[强网杯 2019]Upload

    目录 刷题记录:[强网杯 2019]Upload 一.知识点 1.源码泄露 2.php反序列化 刷题记录:[强网杯 2019]Upload 题目复现链接:https://buuoj.cn/challe ...

  8. 刷题记录:[XNUCA2019Qualifier]EasyPHP

    目录 刷题记录:[XNUCA2019Qualifier]EasyPHP 解法一 1.error_log结合log_errors自定义错误日志 2.include_path设置包含路径 3.php_va ...

  9. 刷题记录:[DDCTF 2019]homebrew event loop

    目录 刷题记录:[DDCTF 2019]homebrew event loop 知识点 1.逻辑漏洞 2.flask session解密 总结 刷题记录:[DDCTF 2019]homebrew ev ...

随机推荐

  1. C# 报表

    报表技术 1.OWC控件的使用 OWC是office web Components 是组件对象模型(COM)控件的集合,可用于将电子表格,图表和数据库发布到网站上. 在Office2003以后的版本中 ...

  2. 黑马day01 xml 的解析方式

    XML编程:利用java程序去增删改查(CRUD)xml中的数据 解析思想: dom解析 sax解析 基于这两种解析思想市面上就有了非常多的解析api sun jaxp既有dom方式也有sax方式,而 ...

  3. 常用加密算法的Java实现总结(二)

    常用加密算法的Java实现总结(二) ——对称加密算法DES.3DES和AES 摘自:http://www.blogjava.net/amigoxie/archive/2014/07/06/41550 ...

  4. SourceInsight打开的工程中中文字体显示乱码的问题

    1.在ubuntu下进入文件所在目录执行指令“file *”来查看文件的编码方式,sourceinsight有些版本只支持GB2312和ascil码,所以需要编码转换: 2.在ubuntu下可以通过i ...

  5. PDO中获取结果集

    fetch()方法 fetch()方法用于获取结果集的下一行.语法例如以下: mixed PDOStatement::fetch([int fetch_style][,int cursor_orien ...

  6. 使用ClassyShark压缩你的项目

    原文链接 : Shrinking Your Build With No Rules and do it with Class(yShark) 原文作者 : Roberto Orgiu 译文出自 : 开 ...

  7. ado连接mysql和ORACLE

    ------mysql strConnect.Format("Provider=MSDASQL.1;Driver={%s};Server=%s;DataBase=%s;UID=%s;PWD= ...

  8. [RxJS] Hot Observable, by .share()

    .share() is an alias for .publish().refCount(). So if the source is not yet completed, no matter how ...

  9. [RxJS] Implement pause and resume feature correctly through RxJS

    Eventually you will feel the need for pausing the observation of an Observable and resuming it later ...

  10. [Docker] Build a Simple Node.js Web Server with Docker

    Learn how to build a simple Node.js web server with Docker. In this lesson, we'll create a Dockerfil ...