[bzoj1468][poj1741]Tree[点分治]
可以说是点分治第一题,之前那道的点分治只是模模糊糊,做完这道题感觉清楚了很多,点分治可以理解为每次树的重心(这样会把数分为若干棵子树,子树大小为log级别),然后统计包含重心的整个子树的值减去各个子树的值,这样算出的就是与这个重心有关的情况的答案,比如这道题,求路径,那么就考虑在重心所在的子树中所有的路径减去不过重心的路径就是过重心的路径了。之前重心没找对...poj时间卡的紧就T了。。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime> using namespace std; struct Edge
{
int to,next,w;
}e[]; int n,k,cnt,p[],Ans;
int Son[],f[],val[],depth[];
bool visited[]; void Add_edge(const int x,const int y,const int z)
{
e[++cnt].to=y;
e[cnt].next=p[x];
e[cnt].w=z;
p[x]=cnt;
return ;
} void Get_root(const int S,const int fa,const int tot,int & root)
{
Son[S]=,f[S]=;
for(int i=p[S];i;i=e[i].next)
{
if(e[i].to==fa || visited[e[i].to])continue;
Get_root(e[i].to,S,tot,root);
Son[S]+=Son[e[i].to];
f[S]=max(f[S],Son[e[i].to]);
}
f[S]=max(f[S],tot-Son[S]);
if(f[S]<f[root])root=S;
return ;
} void Get_depth(const int S,const int fa)
{
val[++val[]]=depth[S];
for(int i=p[S];i;i=e[i].next)
{
if(e[i].to==fa || visited[e[i].to])continue;
depth[e[i].to]=depth[S]+e[i].w;
Get_depth(e[i].to,S);
}
return ;
} int Calc(const int S,const int w)
{
depth[S]=w,val[]=;
Get_depth(S,);
sort(val+,val+val[]+);
int t=,l,r;
for(l=,r=val[];l<r;)
{
if(val[l]+val[r]<=k)t+=r-l,l++;
else r--;
}
return t;
} void TDC(const int S)
{
Ans+=Calc(S,);
visited[S]=true;
for(int i=p[S];i;i=e[i].next)
{
if(visited[e[i].to])continue;
Ans-=Calc(e[i].to,e[i].w);
int root=;
Get_root(e[i].to,,Son[e[i].to],root);
TDC(root);
}
return ;
} int main()
{
int x,y,z,i,root; while(scanf("%d%d",&n,&k) && n && k)
{
root=,memset(p,,sizeof(p));cnt=;
memset(visited,,sizeof(visited));
Ans=;
for(i=;i<n;++i)
{
scanf("%d%d%d",&x,&y,&z);
Add_edge(x,y,z);
Add_edge(y,x,z);
} f[]=0x3f3f3f3f;
Get_root(,,n,root);
TDC(root); printf("%d\n",Ans);
} return ;
}
[bzoj1468][poj1741]Tree[点分治]的更多相关文章
- [bzoj1468][poj1741]Tree_点分治
Tree bzoj-1468 poj-1741 题目大意:给你一颗n个点的树,求树上所有路径边权和不大于m的路径条数. 注释:$1\le n\le 4\cdot 10^4$,$1\le m \le 1 ...
- 【BZOJ-1468】Tree 树分治
1468: Tree Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1025 Solved: 534[Submit][Status][Discuss] ...
- [POJ1741]Tree(点分治)
树分治之点分治入门 所谓点分治,就是对于树针对点的分治处理 首先找出重心以保证时间复杂度 然后递归处理所有子树 对于这道题,对于点对(u,v)满足dis(u,v)<=k,分2种情况 路径过当前根 ...
- 【BZOJ1468】Tree [点分治]
Tree Time Limit: 10 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description 给你一棵TREE,以及这棵树上边的距 ...
- [poj1741]Tree(点分治+容斥原理)
题意:求树中点对距离<=k的无序点对个数. 解题关键:树上点分治,这个分治并没有传统分治的合并过程,只是分成各个小问题,并将各个小问题的答案相加即可,也就是每层的复杂度并不在合并的过程,是在每层 ...
- POJ1741 Tree 树分治模板
http://poj.org/problem?id=1741 题意:一棵n个点的树,每条边有距离v,求该树中距离小于等于k的点的对数. dis[y]表示点y到根x的距离,v代表根到子树根的距离 ...
- POJ1741 Tree + BZOJ1468 Tree 【点分治】
POJ1741 Tree + BZOJ1468 Tree Description Give a tree with n vertices,each edge has a length(positive ...
- 点分治【bzoj1468】 Tree
点分治[bzoj1468] Tree Description 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K Input N(n<=40000) 接下来n-1行边 ...
- BZOJ.1468.Tree(点分治)
BZOJ1468 POJ1741 题意: 计算树上距离<=K的点对数 我们知道树上一条路径要么经过根节点,要么在同一棵子树中. 于是对一个点x我们可以这样统计: 计算出所有点到它的距离dep[] ...
随机推荐
- POJ2449 Remmarguts' Date 第K短路
POJ2449 比较裸的K短路问题 K短路听起来高大上 实际思路并不复杂 首先对终点t到其他所有点求最短路 即为dist[] 然后由起点s 根据当前走过的距离+dist[]进行A*搜索 第k次到达t即 ...
- vue单页面应用刷新网页后vuex的state数据丢失问题以及beforeunload的兼容性
最近在用vue写h5项目,当使用window.location重定向页面或者刷新当前页面时, 发现当刷新网页后,保存在vuex实例store里的数据会丢失. 后来在网上查找大神的解决方案如下: exp ...
- codevs地鼠游戏(贪心)
1052 地鼠游戏 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 王钢是一名学习成绩优异的学生,在平时的学习中,他 ...
- IOC框架---什么是IOC
1 IoC理论的背景 我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. ...
- 03-vue实例生命周期和vue-resource
vue实例的生命周期 什么是生命周期:从Vue实例创建.运行.到销毁期间,总是伴随着各种各样的事件,这些事件,统称为生命周期! 生命周期钩子:就是生命周期事件的别名而已: 生命周期钩子 = 生命周期函 ...
- 安卓5.0新特性之Palette
根据图片来决定标题的颜色和标题栏的背景色,这样视觉上更具有冲击力和新鲜感,而不像统一色调那样呆板. Palette这个类能提取以下突出的颜色: Vibrant(充满活力的) Vibrant dark( ...
- Offer收割_4
1.水题 2.BFS宽搜(使用优先队列priority_queue) 4.题意:给数组a.要求重排列数组,使得数组中的任意相邻的两个元素不同.如果存在多个方案,那么选择字典序最小的方案. 如果不能满 ...
- [转]mysql视图学习总结
转自:http://www.cnblogs.com/wangtao_20/archive/2011/02/24/1964276.html 一.使用视图的理由是什么?1.安全性.一般是这样做的:创建一个 ...
- Struts2 之 实现文件上传(多文件)和下载
Struts2 之 实现文件上传和下载 必须要引入的jar commons-fileupload-1.3.1.jar commons-io-2.2.jar 01.文件上传需要分别在struts.xm ...
- 【译】x86程序员手册00 - 翻译起因
从上一次学习MIT的操作系统课程又过去了一年.上次学习并没有坚持下去.想来虽有种种原因,其还在自身无法坚持罢了.故此次再鼓起勇气重新学习,发现课程都已由2014改版为2016了.但大部分内容并没有改变 ...