ACM数论总结
ACM数论总结
http://blog.csdn.net/xieshimao/article/details/6425099
断断续续的学习数论已经有一段时间了,学得也很杂,现在进行一些简单的回顾和总结。
学过的东西不能忘啊。。。
1、本原勾股数:
概念:一个三元组(a,b,c),其中a,b,c没有公因数而且满足:a^2+b^2=c^2
首先,这种本原勾股数的个数是无限的,而且构造的条件满足:
a=s*t,b=(s^2-t^2)/2,c=(s^2+t^2)/2
其中s>t>=1是任意没有公因数的奇数!
由以上概念就可以导出任意一个本原勾股数组。
2、素数计数(素数定理)
令π(x)为1到x中素数的个数
19世纪最高的数论成就就是以下这个玩意儿:
lim(x->∞){π(x)/(x/ln(x))}=1
数论最高成就,最高成就!!!有木有!!!
3、哥德巴赫猜想(1+1)
一个大偶数(>=4)必然可以拆分为两个素数的和,虽然目前还没有人能够从理论上进行证明,不过我根据科学家们利用计算机运算的结果,如果有一个偶数不能进行拆分,那么这个偶数至少是一个上百位的数!!
所以在ACM的世界中(数据量往往只有2^63以下)哥德巴赫猜想是成立的!!所以拆分程序一定能够实现的
4、哥德巴赫猜想的推广
任意一个>=8的整数一定能够拆分为四个素数的和
证明:
先来说8=2+2+2+2,(四个最小素数的和)不能再找到比2小的素数了,所以当n小于8,就一定不可能拆分为四个素数的和!
那么当n大于等于8,可以分情况讨论:
(1)n&1==0(n为偶数),那么n就一定可以拆分为两个偶数的和
那么根据哥德巴赫猜想,偶数可以拆分为两个素数的和,于是,n一定可以拆分为四个素数的和
(2)n&1==1(n为奇数),n一定可以拆分为两个偶数+1
由于有一个素数又是偶数,2,那么奇数一定有如下拆分:2+3+素数+素数
得证。
5、欧拉函数(欧拉公式)
欧拉函数ph(n)的意思是所有小于n且与n互质的数的个数
比如说ph(12)=4,[1,5,7,11与12互质]
欧拉公式
a^ph(m)=1(mod m)
6、费马小定理
费马小定理是欧拉公式的一种特殊情况
由于当p为质数的时候ph(p)=p-1这是显然的
那么带入欧拉公式就得到了费马小定理
a^(p-1)=1(mod p)
p为质数(prime)
7、抽屉原理
抽屉原理其实是废话,关键在于运用
这句废话是说,如果现在有3个苹果,放进2个抽屉,那么至少有一个抽屉里面会有两个苹果,这个很废话。
8、抽屉原理的运用
抽屉原理本身只是一句废话,不过他的运用却非常强大
现在假设有一个正整数序列a1,a2,a3,a4.....an,试证明我们一定能够找到一段连续的序列和,让这个和是n的倍数,该命题的证明就用到了抽屉原理
我们可以先构造一个序列si=a1+a2+...ai
然后分别对于si取模,如果其中有一个sk%n==0,那么a1+a2+...+ak就一定是n的倍数(该种情况得证)
下面是上一种情况的反面,即任何一个sk对于n的余数都不为0
对于这种情况,我们可以如下考虑,因为si%n!=0
那么si%n的范围必然在1——(n-1),所以原序列si就产生了n个范围在1——(n-1)的余数,于是抽屉原理就来了,n个数放进n-1个盒子里面,必然至少有两个余数会重复,那么这两个sk1,sk2之差必然是n的倍数,
而sk1-sk2是一段连续的序列,那么原命题就得到了证明了
9、判断n!是否能够被m整除
计算方法是把m进行质因数分解,看下m的每一个质因数是否能够在n!中找到;
n!中间包含了多少个x(x是任意的一个数,不过一般情况下我们都只讨论x为质数),这种问题的答案是: n/x+n/(x^2)+n/(x^3).....[一直加到x的乘方不超过n],这个定理的证明也非常的简单,这里就不再赘述了
根据以上观点,就可以分别计算m的每一个质因数是否被完全包含,如果有一个没有被包含,那么就不能被整除!
10、因子和的计算方法
神马叫因子和:一个数的所以因子的和就叫因子和。。。
好吧,举个例子:12的因子和为:1+2+3+4+6+12
计算方法是把12分解为质因数的表达形式2^2*3
那么他的因子和就是:(1+2+2^2)*(1+3)
证明写起来比较麻烦,大体上思路就是牛顿二项式。。。
11、判断组合数C(n,m)的奇偶性
有一个我也不知道证明的方法
当n&m==m为奇数,反之就是偶数
ACM数论总结的更多相关文章
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- ACM数论-欧几里得与拓展欧几里得
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...
- ACM数论-快速幂
ACM数论——快速幂 快速幂定义: 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 原理: 以下以求a的b次方来介绍: 把b转换成 ...
- ACM数论-素数
ACM数论——素数 素数定义: 质数(prime number)又称素数,有无限个.质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数,这样的数称为质数.例 子:2.3.5.7.11.1 ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我) (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...
随机推荐
- AJAX-responseXML 属性
如果来自服务器的响应是 XML,而且需要作为 XML 对象进行解析,需要使用 responseXML 属性 cd_catalog.xml: <CATALOG><CD><T ...
- Python3安装Scrapy
Microsoft Visual C++ Build Tools 最近项目在写爬虫,项目经理给了个Python Scrapy的爬虫项目,要求使用Java实现相关功能.于是乎在本地先后安装了Pytho ...
- Java初级面试模拟1
1.简单介绍一下你的项目,说一下项目有什么模块 2.说说常见的集合有哪些吧 答:Map接口和Collection接口是所有集合框架的父接口: Collection接口的子接口包括:Set接口和List ...
- $CF41D\ Pawn$
\(problem\) 与这题 灰常的相似 然后内存可能过大 开个滚动数组 因为数塔问题总是 只需要上面一行的两个状态(这题就是数塔问题) 下面的代码与原题不符.(原题要输出路径)想抄的可以走了 输出 ...
- Python多线程、多进程
1.from multiprocessing import Process ; from threading import Thread 2.进程之间的数据传输 ,一般会使用到pipes, qu ...
- 怎么在windows上安装 ansible How to install ansible to my python at Windows
答案是不能再window上安装,答案如下: It's back! Take the 2018 Developer Survey today » Join Stack Overflow to learn ...
- Flume OG 与 Flume NG 的对比
Flume OG 与 Flume NG 的对比 1.Flume OG Flume OG:Flume original generation 即Flume 0.9.x版本,它由agent.collect ...
- Data URI scheme:data:image/jpeg;
今天在用一个croppic的jQuery裁剪图片的插件的时候,发现在后台获取图片时,无法通过Request.File获取了,但是通过Request.Form[]可以.用firebug跟了一下发现,图片 ...
- V-SQL的简单使用
V-SQL概述: V-SQL,是对同望V3平台时间多数据支持非常重要的基础引擎.因为各个数据库的查询语句的语法有所不同,V-SQL的功能是把查询语句解析为执行系统连接的数据库(MSSQL,Oracle ...
- lua_string_pattern
两大特点: 1. string库中所有的字符索引从前往后是1,2,...;从后往前是-1,-2,... 2. string库中所有的function都不会直接操作字符串,而是返回一个新的字符串. 库函 ...