POJ 3150 Cellular Automaton(矩阵高速幂)
题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1)。假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部数字之和模m。求对此环进行K次d-step(K<=10000000)后这个环的数字会变为多少。
看了一篇博客:http://www.cppblog.com/varg-vikernes/archive/2011/02/08/139804.html说的非常清楚。
拿例子来说:
a矩阵:
a = 1 2 2 1 2
构造出来一个矩阵:
b =
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
(a4+a0+a1) (a0+a1+a2) (a1+a2+a3) (a2+a3+a4) (a3+a4+a0)得到的矩阵e = 5 5 5 5 4
所以题意就是:a*(b^k) = e。求出e就是通过解b^k。由于直接求b^k会超时,所以要二分求幂。
这个题的矩阵另一个性质:
利用矩阵A。B具有A[i][j]=A[i-1][j-1],B[i][j]=B[i-1][j-1](i-1<0则表示i-1+n,j-1<0则表示j-1+n)
我们能够得出矩阵C=a*b也具有这个性质
C[i][j]=sum(A[i][t]*B[t][j])=sum(A[i-1][t-1],B[t-1][j-1])=sum(A[i-1][t],B[t][j-1])=C[i-1][j-1]
“”“
所以能够求出C[0][0],以后的递推得到。
| Time Limit: 12000MS | Memory Limit: 65536K | |
| Total Submissions: 3057 | Accepted: 1232 | |
| Case Time Limit: 2000MS | ||
Description
A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules that describe the new state of a cell based on the states of neighboring cells. The order
of the cellular automaton is the number of cells it contains. Cells of the automaton of order n are numbered from 1 to n.
The order of the cell is the number of different values it may contain. Usually, values of a cell of order m are considered to be integer numbers from 0 to m − 1.
One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed. In this problem we examine the special kind of cellular automaton — circular cellular automaton of order n with cells of order m.
We will denote such kind of cellular automaton as n,m-automaton.
A distance between cells i and j in n,m-automaton is defined as min(|i − j|, n − |i − j|). A d-environment of a cell is the set of cells at a distance not greater than d.
On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.
The following picture shows 1-step of the 5,3-automaton.

The problem is to calculate the state of the n,m-automaton after k d-steps.
Input
The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500, 1 ≤ m ≤ 1 000 000, 0 ≤ d < n⁄2 , 1 ≤ k ≤ 10 000 000). The second
line contains n integer numbers from 0 to m − 1 — initial values of the automaton’s cells.
Output
Output the values of the n,m-automaton’s cells after k d-steps.
Sample Input
sample input #1
5 3 1 1
1 2 2 1 2 sample input #2
5 3 1 10
1 2 2 1 2
Sample Output
sample output #1
2 2 2 2 1 sample output #2
2 0 0 2 2
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)? 0:x) const int maxn = 550; using namespace std; LL e[maxn][maxn];
LL c[maxn][maxn];
LL xmul[maxn][maxn];
LL num[maxn];
LL ans[maxn];
int n, m, d; void Mul(LL a[][maxn], LL b[][maxn])
{
memset(c, 0, sizeof(c));
for(int i = 0; i < n; i++)
{
if(!a[0][i])
continue;
for(int j = 0; j < n; j++)
{
c[0][j] += a[0][i]*b[i][j];
c[0][j] %= m;
}
}
for(int i = 1; i < n; i++)
for(int j = 0; j < n; j++) c[i][j] = c[i-1][(j-1+n)%n];
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) b[i][j] = c[i][j];
} void expo(LL a[][maxn], int k)
{
if(k == 1)
{
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) e[i][j] = a[i][j];
return;
}
memset(e, 0, sizeof(e));
for(int i = 0; i < n; i++) e[i][i] = 1;
while(k)
{
if(k&1) Mul(a, e);
Mul(a, a);
k /= 2;
}
}
int main()
{
int k;
while(cin >>n>>m>>d>>k)
{
for(int i = 0; i < n; i++) cin >>num[i];
memset(xmul, 0, sizeof(xmul));
xmul[0][0] = 1;
for(int i = 1; i <= d; i++) xmul[0][i] = xmul[0][n-i] = 1;
for(int i = 1; i < n; i++)
for(int j = 0; j < n; j++) xmul[i][j] = xmul[i-1][(j-1+n)%n];
expo(xmul, k);
memset(ans, 0, sizeof(ans));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
ans[i] += e[i][j]*num[j];
ans[i] %= m;
}
}
for(int i = 0; i < n-1; i++) cout<<ans[i]<<" ";
cout<<ans[n-1]<<endl;
}
return 0;
}
POJ 3150 Cellular Automaton(矩阵高速幂)的更多相关文章
- [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3048 Accepted: 12 ...
- POJ 3150 Cellular Automaton --矩阵快速幂及优化
题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...
- POJ 3150 Cellular Automaton(矩阵快速幂)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...
- POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)
A cellular automaton is a collection of cells on a grid of specified shape that evolves through a nu ...
- POJ 3150 Cellular Automaton(矩阵乘法+二分)
题目链接 题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么. 思路 :下述来自here 首先来看一下Sample里的第一组 ...
- poj 3150 Cellular Automaton
首先来看一下Sample里的第一组数据.1 2 2 1 2经过一次变换之后就成了5 5 5 5 4它的原理就是a0 a1 a2 a3 a4->(a4+a0+a1) (a0+a1+a2) (a1+ ...
- poj 2778 AC自己主动机 + 矩阵高速幂
// poj 2778 AC自己主动机 + 矩阵高速幂 // // 题目链接: // // http://poj.org/problem?id=2778 // // 解题思路: // // 建立AC自 ...
- poj 3233(矩阵高速幂)
题目链接:http://poj.org/problem?id=3233. 题意:给出一个公式求这个式子模m的解: 分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点.本题k的值非常大.所以要用 ...
- POJ 3613 Cow Relays (floyd + 矩阵高速幂)
题目大意: 求刚好经过K条路的最短路 我们知道假设一个矩阵A[i][j] 表示表示 i-j 是否可达 那么 A*A=B B[i][j] 就表示 i-j 刚好走过两条路的方法数 那么同理 我们把 ...
随机推荐
- 紫书 例题8-7 UVa 11572(滑动窗口)
滑动窗口这个方法名字非常形象, 先是窗口的右指针尽量往右滑, 滑不动了就滑窗口的左指针, 滑到右指针又可以开始滑动为止. 这道题是要记录滑的过程中最大的窗口长度, 限制条件是窗口中不能出现重复的值. ...
- 【BZOJ 1177】 [Apio2009]Oil
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如上图. 显然如果三个正方形.只可能是上面的情况. 则可以处理一下左上角.右上角.左下角.右下角的前缀最大正方形(dp),以及以某一 ...
- [terry笔记]data guard基础知识
如下介绍了data guard的基础知识,整理自网络: Data Gurad 通过冗余数据来提供数据保护,Data Gurad 通过日志同步机制保证冗余数据和主数据之前的同步,这种同步可以是实时,延时 ...
- ZOJ 3365 Integer Numbers
Integer Numbers Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on ZJU. Origina ...
- spring中操作mysql数据库
就是在spring中,对mysql数据库进行增删改查的样例,很easy. 文件结构 maven的pom.xml文件,里面用到的几个很重要的jar包都有 <project xmlns=" ...
- MapReduce 的类型与格式【编写最简单的mapreduce】(1)
hadoop mapreduce 中的map 和reduce 函数遵循下面的形式 map: (K1, V1) → list(K2, V2) reduce: (K2, list(V2)) → list( ...
- HDOJ1084 What Is Your Grade?
What Is Your Grade? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- ubuntu,jdk安装成功后,点击eclipse,提示信息A Java RunTime Environment (JRE) or Java Development Kit (JDK)
A Java RunTime Environment (JRE) or Java Development Kit (JDK) must be available in order to run Ecl ...
- jsp出现错误can not find the tag directory /web-inf/tags
百度google了一大圈没找到中文答案,无奈之下硬着头皮看了一个英文答案http://stackoverflow.com/questions/11502703/eclipse-can-not-find ...
- powershell输出错误信息到文件
https://stackoverflow.com/questions/8925323/redirection-of-standard-and-error-output-appending-to-th ...