A Plug for UNIX
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14862   Accepted: 5026

Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible. 

Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was
built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs:
laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling 

irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can. 

Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't
exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug. 

In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have
adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string
of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which
is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric 

characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available.
Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4
A
B
C
D
5
laptop B
phone C
pager B
clock B
comb X
3
B X
X A
X D

Sample Output

1

Source

East Central North America 1999

题目大意:这题题目意思实在太难懂,只是题目意思搞清楚之后还是比較好做的

在这个题目里有两种物品,一个是插座,一个是电器插座仅仅有一个插孔和一

个插头,电器仅仅有一个插头首先有n种插座,n种插座用字符串表示,这n种插

座能够理解为是插在电源上的插座然后有m个电器。如今电器要充电,电器用

字符串表示,每一个电器都有自己能够插的插座(这个插座能够不是那n个插在电

源上的插座。能够是其它的插座)如今有k个信息s1 s2代表s1插座能够插到s2

插座上去,这里类似于将插头转换了一下这些s1与s2也能够不是那n个插在电

源上的插座给出这些个信息问你还有多少个电器没有插座能够用

建图:

建一个源点,指向全部电器。容量为1

全部电器指向他们能够插的那个插头上。容量为1

假设一个插头能够插到还有一个插头,那么将s1指向s2。容量为无限大

将全部插在电源上的插头指向汇点,容量为1





然后从源点到汇点求最大流就可以

只是建图会比較复杂,由于涉及到字符串的处理。所以用map容器比較好做点

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
#define M 1000
struct node{
int v,next,w;
}mp[M*M];
int head[M],dis[M],cnt,st,et;
void add(int u,int v,int w){
mp[cnt].v=v;
mp[cnt].w=w;
mp[cnt].next=head[u];
head[u]=cnt++;
mp[cnt].v=u;
mp[cnt].w=0;//有向图
mp[cnt].next=head[v];
head[v]=cnt++;
}
int bfs(){
memset(dis,-1,sizeof(dis));
queue<int> q;
while(!q.empty()) q.pop();
dis[st]=0;
q.push(st);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=mp[i].next){
int v=mp[i].v;
if(mp[i].w && dis[v]==-1){
dis[v]=dis[u]+1;
q.push(v);
if(v==et) return 1;
}
}
}
return 0;
}
int dinic(int u,int low){
if(u==et || low==0) return low;
int ans=low,i,a;
for(i=head[u];i!=-1;i=mp[i].next){
int v=mp[i].v;
if(dis[v]==dis[u]+1 && mp[i].w && (a=dinic(v,min(ans,mp[i].w)))){
mp[i].w-=a;
mp[i^1].w+=a;//開始的时候写成mp[i].v,,找了半天错。擦擦擦擦擦
ans-=a;
if(ans==0) return low;
}
}
return low-ans;
}
int main(){
int t,i,j,k,n,tot;
char str[30],ch[30];
scanf("%d",&n);
map<string,int> m;
cnt=0; tot=1;//给电器编号
memset(head,-1,sizeof(head));
m.clear();
st=0; et=M-1;//起点,终点
for(i=0;i<n;i++){
scanf("%s",str);
m[str]=tot++;
add(m[str],et,1);
} scanf("%d",&t);
for(i=0;i<t;i++){
scanf("%s %s",str,ch);
m[str]=tot++;
if(!m[ch]) m[ch]=tot++;
add(st,m[str],1);
add(m[str],m[ch],1);
}
scanf("%d",&k);
for(i=0;i<k;i++){
scanf("%s %s",str,ch);
if(!m[str]) m[str]=tot++;
if(!m[ch]) m[ch]=tot++;
add(m[str],m[ch],inf);
}
int ans=0;
while(bfs()){
ans+=dinic(st,inf);
}
printf("%d\n",t-ans);
return 0;
}

poj 1087 A Plug for UNIX(字符串编号建图)的更多相关文章

  1. POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for UNIX / UVAlive 5418 A Plug for UNIX / SCU 1671 A Plug for UNIX (网络流)

    POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for ...

  2. POJ A Plug for UNIX (最大流 建图)

    Description You are in charge of setting up the press room for the inaugural meeting of the United N ...

  3. poj 1087 A Plug for UNIX 【最大流】

    题目连接:http://poj.org/problem? id=1087 题意: n种插座 ,m个电器,f组(x,y)表示插座x能够替换插座y,问你最多能给几个电器充电. 解法:起点向插座建边,容量1 ...

  4. POJ 1087 A Plug for UNIX (网络流,最大流)

    题面 You are in charge of setting up the press room for the inaugural meeting of the United Nations In ...

  5. kuangbin专题专题十一 网络流 POJ 1087 A Plug for UNIX

    题目链接:https://vjudge.net/problem/POJ-1087 题目:有n个插座,插座上只有一个插孔,有m个用电器,每个用电器都有插头,它们的插头可以一样, 有k个插孔转化器, a ...

  6. poj 1087 A Plug for UNIX

    题目描述:现在由你负责布置Internet联合组织首席执行官就职新闻发布会的会议室.由于会议室修建时被设计成容纳全世界各地的新闻记者,因此会议室提供了多种电源插座用以满足(会议室修建时期)各国不同插头 ...

  7. poj 1087.A Plug for UNIX (最大流)

    网络流,关键在建图 建图思路在代码里 /* 最大流SAP 邻接表 思路:基本源于FF方法,给每个顶点设定层次标号,和允许弧. 优化: 1.当前弧优化(重要). 1.每找到以条增广路回退到断点(常数优化 ...

  8. 【poj 1087 a plug for UNIX】

    在大米饼的帮助下,终于找到了大米饼程序中如同大米饼一般的错误! 考点在问题转化,然后就跑一个你喜欢的最大流算法(二分图可以啵?) 再来一个例子吧: [纯手绘大米饼图片] 其中有的边权是1,否则就是in ...

  9. hdu 1087 A Plug for UNIX 最大流

    题意:http://www.phpfans.net/article/htmls/201012/MzI1MDQw.html 1.在一个会议室里有n种插座,每种插座一个: 2.每个插座只能插一种以及一个电 ...

随机推荐

  1. rest_framework-版本-总结完结篇

    总urls.py from django.conf.urls import url, include urlpatterns = [ url(r'^api/', include('api.urls') ...

  2. rest_framework 节流功能(访问频率)

    访问记录 = { 身份证号: [ :: ,::, ::] } #:: ,::,:: ,::, #:: #[::, ::, ::] #访问记录 = { 用户IP: [...] } import time ...

  3. 数论之证明数n等于其因数的欧拉函数值之和

    定理: 任何正整数n等于其因数的欧拉函数值之和,即∑d|nφ(d)=n 证明: 设一个集合{1/n,2/n,3/n,...,(n-1)/n,n/n} 对于上述的分式集合,若我们都将其化简至最简形式,设 ...

  4. CUDA笔记(十)

    下午仔细研究了两个程序,然后搜了一下解决方法 http://blog.sina.com.cn/s/blog_6de28fbd01011cru.html http://blog.csdn.net/che ...

  5. 机器学习(七) PCA与梯度上升法 (上)

    一.什么是PCA 主成分分析 Principal Component Analysis 一个非监督学的学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化:去噪 第一 ...

  6. Hyper-V 导入与导出虚拟机

    虚拟机的导入与导出功能可以将虚拟机通过文件的方式进行转移,可以将虚拟机的文件复制到活动硬盘,然后带到其他的地点进行导入,这样方便了虚拟机的跨地域的转移.但是有一点要注意,所有要转移的虚拟机都必须处于停 ...

  7. BZOJ 3637: Query on a tree VI LCT_维护子树信息_点权转边权_好题

    非常喜欢这道题. 点权转边权,这样每次在切断一个点的所有儿子的时候只断掉一条边即可. Code: #include <cstring> #include <cstdio> #i ...

  8. Tiles入门及项目实战

    1.Apache Tiles™ Apache Tiles是一个模板布局框架.最初是为了简化Web应用界面开发,如今已不限于JavaEE Web环境. Tiles允许开发人员定义页面片段,它们在运行时会 ...

  9. 关于thinkphp 命令行

    很多人做多年开发只懂得PHP能在浏览器下运行或者只能结合APACHE等WEB服务器运行,却不晓得,PHP也能用命令行执行,或许是由于大多人在WINDOWS平台做开发部署运行,比较少接触LINUX. T ...

  10. 【DevExpress】GridControl添加按钮列并添加按钮事件

    在GridControl中添加按钮列的步骤如下: 1. 把列的ColumnEdit属性设置为RepositoryItemButtonEdit 2. 把TextEditStyle属性设置为HideTex ...