今天学习了树形\(dp\),一开始浏览各大\(blog\),发现都\(TM\)是题,连个入门的\(blog\)都没有,体验极差。所以我立志要写一篇可以让初学树形\(dp\)的童鞋快速入门。

树形\(dp\)

概念类

树形\(dp\)是一种很优美的动态规划,真的很优美真的,前提是在你学会它之后。

实现形式

树形\(dp\)的主要实现形式是\(dfs\),在\(dfs\)中\(dp\),主要的实现形式是\(dp[i][j][0/1]\),\(i\)是以\(i\)为根的子树,\(j\)是表示在以\(i\)为根的子树中选择\(j\)个子节点,\(0\)表示这个节点不选,\(1\)表示选择这个节点。有的时候\(j\)或\(0/1\)这一维可以压掉

基本的\(dp\)方程

选择节点类

\[\begin{cases}
dp[i][0]=dp[j][1]
\\
dp[i][1]=\max/\min(dp[j][0],dp[j][1])\\
\end{cases}
\]

树形背包类

\[\begin{cases}
dp[v][k]=dp[u][k]+val\\
dp[u][k]=max(dp[u][k],dp[v][k-1])\\
\end{cases}
\]

例题类

以上就是对树形\(dp\)的基本介绍,因为树形\(dp\)没有基本的形式,然后其也没有固定的做法,一般一种题目有一种做法。

没有上司的舞会

这道题是一树形\(dp\)入门级别的题目,具体方程就用到了上述的选择方程。

#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 6001
using namespace std;
int ind[N],n,hap[N],dp[N][2],fa[N],root,vis[N],ne[N],po[N];
void work(int x)
{
for(int i = po[x]; i; i = ne[i])
{
work(i);
dp[x][1]=max(max(dp[x][1],dp[x][1]+dp[i][0]),dp[i][0]);
dp[x][0]=max(max(dp[x][0],dp[i][1]+dp[x][0]),max(dp[i][1],dp [i][0]));
}
}
int main()
{
cin >> n;
for(int i=1; i<=n; i++)
cin >> dp[i][1];
for(int i=1; i<=n; i++)
{
int a,b;
cin >> b >> a;
ind[b]++;
ne[b] = po[a];
po[a] = b;
}
for(int i=1; i<=n; i++)
if(!ind[i])
{
root=i;
break;
}
work(root);
cout << max(dp[root][0],dp[root][1]);
}

最大子树和

这道题的\(dp\)方程有变,因为你的操作是切掉这个点,所以你的子树要么加上价值,要么价值为\(0\),所以\(dp\)方程是

\[dp[u]+=max(dp[v],0)
\]

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue> using namespace std;
struct edge
{
int next,to;
} e[40000];
int head[40000],tot,rt,maxn;
void add(int x,int y)
{
e[++tot].next=head[x];
head[x]=tot;
e[tot].to=y;
}
int n,dp[20000],ind[20000];
int val[20000],f[20000];
void dfs_f__k(int x,int fa)
{
f[x]=fa;
for(int i=head[x]; i; i=e[i].next)
{
int v=e[i].to;
if(v!=fa)
dfs_f__k(v,x);
}
}
void dfs(int x)
{
dp[x]=val[x];
for(int i=head[x]; i; i=e[i].next)
{
int v=e[i].to;
if(v!=f[x])
{
dfs(v);
dp[x]+=max(0,dp[v]);
}
}
maxn=max(maxn,dp[x]);
}
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)scanf("%d",&val[i]);
for(int i=1; i<=n-1; i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
rt=1;
dfs_f__k(rt,0);
dfs(rt);
printf("%d",maxn);
}

选课

这道题的意思是每本书要想选择一门课,必须要先学会它的必修课,所以这就形成了一种依赖行为,即选择一门课必须要选择必修课。那么他又说要选择的价值最大,这就要用到树形背包的知识了。

树形背包的基本代码形式(即上面的树形背包类)

/*
设dp[i][j]表示选择以i为根的子树中j个节点。
u代表当前根节点,tot代表其选择的节点的总额。
*/
void dfs(int u,int tot)
{
for(int i=head[x];i;i=e[i].next)
{
int v=e[i].to;
for(int k=0;k<tot;k++)//这里k从o开始到tot-1,因为v的子树可以选择的节点是u的子树的节点数减一
dp[v][k]=dp[u][k]+val[u];
dfs(v,tot-1)
for(int k=1;k<=tot;k++)
dp[u][k]=max(dp[u][k],dp[v][k-1]);//这里是把子树的值赋给了根节点,因为u选择k个点v只能选择k-1个点。
}
}

然后这就是树形背包的基本形式,基本就是这样做

代码

#include<iostream>
#include<algorithm>
#include<queue>
#include<cstdio>
#include<cstring>
using namespace std; int n,m;
struct edge
{
int next,to;
}e[1000];
int rt,head[1000],tot,val[1000],dp[1000][1000];
void add(int x,int y)
{
e[++tot].next=head[x];
head[x]=tot;
e[tot].to=y;
}
void dfs(int u,int t)
{
if (t<=0) return ;
for (int i=head[u]; i; i=e[i].next)
{
int v = e[i].to;
for (int k=0; k<t; ++k)
dp[v][k] = dp[u][k]+val[v];
dfs(v,t-1);
for (int k=1; k<=t; ++k)
dp[u][k] = max(dp[u][k],dp[v][k-1]);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
int a;
scanf("%d%d",&a,&val[i]);
if(a)
add(a,i);
if(!a)add(0,i);
}
dfs(0,m);
printf("%d",dp[0][m]);
}

Strategic game

这道题的意思是选择最少的点来覆盖一棵树,可以用最小点覆盖(也就是二分图最大匹配)或者树形\(dp\)来做,因为这里我们的专题是树形\(dp\),所以我们现在就讲树形\(dp\)的做法。

我们做这道题的方法是用选择方程来做,因为你要做最小点覆盖,要么选这个点要么不选对吧。

于是\(dp\)的转移方程就是上述一方程

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
int n;
struct edge
{
int next,to;
} e[4000];
int head[4000],tot,dp[4000][2],ind[4000];
void add(int x,int y)
{
e[++tot].next=head[x];
head[x]=tot;
e[tot].to=y;
}
void dfs(int x)
{
dp[x][1]=1;
for(int i=head[x]; i; i=e[i].next)
{
int v=e[i].to;
dfs(v);
dp[x][0]+=dp[v][1];
dp[x][1]+=min(dp[v][0],dp[v][1]);
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
memset(dp,0,sizeof(dp));
memset(head,0,sizeof(head));
memset(ind,0,sizeof(ind));
tot=0;
for(int j=1; j<=n; j++)
{
int a,b;
scanf("%d:(%d)",&a,&b);
for(int i=1; i<=b; i++)
{
int c;
scanf("%d",&c);
ind[c]++;
add(a,c);
}
}
int rt;
for(int i=0; i<=n; i++)
if(!ind[i])
{
rt=i;
break;
}
dfs(rt);
printf("%d\n",min(dp[rt][1],dp[rt][0]));
}
}

树形$dp$学习笔记的更多相关文章

  1. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  2. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  3. PHP-会员登录与注册例子解析-学习笔记

    1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UM ...

  4. 2014年暑假c#学习笔记目录

    2014年暑假c#学习笔记 一.C#编程基础 1. c#编程基础之枚举 2. c#编程基础之函数可变参数 3. c#编程基础之字符串基础 4. c#编程基础之字符串函数 5.c#编程基础之ref.ou ...

  5. JAVA GUI编程学习笔记目录

    2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...

  6. seaJs学习笔记2 – seaJs组建库的使用

    原文地址:seaJs学习笔记2 – seaJs组建库的使用 我觉得学习新东西并不是会使用它就够了的,会使用仅仅代表你看懂了,理解了,二不代表你深入了,彻悟了它的精髓. 所以不断的学习将是源源不断. 最 ...

  7. CSS学习笔记

    CSS学习笔记 2016年12月15日整理 CSS基础 Chapter1 在console输入escape("宋体") ENTER 就会出现unicode编码 显示"%u ...

  8. HTML学习笔记

    HTML学习笔记 2016年12月15日整理 Chapter1 URL(scheme://host.domain:port/path/filename) scheme: 定义因特网服务的类型,常见的为 ...

  9. DirectX Graphics Infrastructure(DXGI):最佳范例 学习笔记

    今天要学习的这篇文章写的算是比较早的了,大概在DX11时代就写好了,当时龙书11版看得很潦草,并没有注意这篇文章,现在看12,觉得是跳不过去的一篇文章,地址如下: https://msdn.micro ...

  10. ucos实时操作系统学习笔记——任务间通信(消息)

    ucos另一种任务间通信的机制是消息(mbox),个人感觉是它是queue中只有一个信息的特殊情况,从代码中可以很清楚的看到,因为之前有关于queue的学习笔记,所以一并讲一下mbox.为什么有了qu ...

随机推荐

  1. loader__demo_css

    环境 node + yarn + webpack4.0 + webpack-cli + style-loader css-loader 文件结构 │ package.json │ webpack.co ...

  2. 00.不规则json序列化使用eval、demjson

    有下面一段字符串 import json str0 = '[{"name":"白云大道营业厅","siteaddr":"x...& ...

  3. ThinkPHP5 自定义异常

    1.配置config.php 自定义异常路径: // 默认AJAX 数据返回格式,可选json xml ...'default_ajax_return' => 'json', 'exceptio ...

  4. vue组件 $children,$refs,$parent的使用详解

    1)$refs 首先你的给子组件做标记.demo :<firstchild ref="one"></firstchild> 然后在父组件中,通过this.$ ...

  5. 【 Codeforces Global Round 1 B】Tape

    [链接] 我是链接,点我呀:) [题意] x轴上有m个连续的点,从1标号到m. 其中有n个点是特殊点. 让你用k段区间将这n个点覆盖. 要求区间的总长度最小. [题解] 一开始假设我们需要n个胶带(即 ...

  6. 清北学堂模拟赛d7t1 消失的数字

    题目描述 现在,我的手上有 n 个数字,分别是 a1; a2; a3; :::; an.我现在需要删除其中的 k 个数字.当然我不希望随随便便删除,我希望删除 k个数字之后,剩下的 n - k 个数中 ...

  7. [cogs461] [网络流24题#10] 餐巾 [网络流,最小费用最大流]

    建图:从源点向第一层连边,第一层表示当天用掉多少餐巾,第二层表示当天需要多少餐巾,所以注意购买餐巾的边容量为无穷大,要从源点开始连向第二层的点,每天可能有剩余,在第一层内表示为流入第二天的节点.具体见 ...

  8. hdu_1018_Big Number_201308191556

    Big NumberTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  9. linux环境下安装varnish

    Varnish是一款高性能的开源HTTP加速器,挪威最大的在线报纸 Verdens Gang 使用3台Varnish代替了原来的12台Squid,性能比以前更好. sudo apt-get insta ...

  10. Linq:Linq实例1..More

    本文会不断更新应用实例. 需求1:对一个Rate列表的RateLevel属性求和,然后除以Rate列表的数量求平均值. 没有Linq的做法: Int rateLevel = ; foreach (Ra ...