【UVA 437】The Tower of Babylon(拓扑排序+DP,做法)
【Solution】
接上一篇,在处理有向无环图的最长链问题的时候,可以在做拓扑排序的同时,一边做DP;
设f[i]表示第i个方块作为最上面的最高值;
f[y]=max(f[y],f[x]+h[y]);(x−>y)∈E
这样可以保证,按阶段进行DP,每次在获取f[x]的时候,你可以保证f[x]已经获得了;
最后取max(f[1..n])
【Code】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("D:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 30;
struct abc{
LL c,k,g;
};
int n,b[4],nn,du[N*3+100];
LL dp[N*3+100];
abc a[N*3+100];
vector <int> G[N*3+100];
queue <int> dl;
int main()
{
//Open();
int kk = 0;
while (~scanf("%d",&n) && n){
kk++;
ms(dp,-1);nn = 0;ms(du,0);
rep1(i,1,N*3) G[i].clear();
rep1(i,1,n){
rep1(j,1,3)
scanf("%d",&b[j]);
sort(b+1,b+1+3);
rep1(j,1,3){
nn++;
rep2(k,3,1)
if (k!=j){
a[nn].c = b[k];
break;
}
rep1(k,1,3)
if (k!=j){
a[nn].k = b[k];
break;
}
a[nn].g = b[j];
}
}
n = nn;
rep1(i,1,n)
rep1(j,1,n)
if (a[i].c > a[j].c && a[i].k > a[j].k){
G[i].pb(j);
du[j]++;
}
while (!dl.empty()) dl.pop();
rep1(i,1,n)
if (du[i]==0){
dl.push(i);
dp[i] = a[i].g;
du[i] = -1;
}
while (!dl.empty()){
int x = dl.front();
dl.pop();
int len = G[x].size();
rep1(i,0,len-1){
int y = G[x][i];
if (dp[y]==-1){
dp[y] = dp[x] + a[y].g;
}else
dp[y] = max(dp[y],dp[x]+a[y].g);
du[y]--;
if (du[y]==0){
dl.push(y);
du[y]= -1;
}
}
}
LL d = 0;
rep1(i,1,n)
d = max(d,dp[i]);
printf("Case %d: maximum height = ",kk);
printf("%lld\n",d);
}
return 0;
}
【UVA 437】The Tower of Babylon(拓扑排序+DP,做法)的更多相关文章
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法 比較不好控制 ...
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- DP(DAG) UVA 437 The Tower of Babylon
题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- UVA 427 The Tower of Babylon 巴比伦塔(dp)
据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...
随机推荐
- 机器学习(十一) 支持向量机 SVM(下)
支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间.特征空间的维数可能非常高.如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高 ...
- Caffe学习--Blob分析
Caffe_blob 1.基本数据结构 Blob为模板类,可以理解为四维数组,n * c * h * w的结构,Layer内为blob输入data和diff,Layer间的blob为学习的参数.内部封 ...
- PKI和加密,散列算法
Day 11-PKI和加密,散列算法 PKI(Public Key Infrastructure公钥基础设施) 1 PKI(Public Key Infrastructure公钥基础设施)回顾学习 - ...
- vue 连接后台
在 index.js 中可以配置后台的地址:代理的方式: 这个文件在 config 中 proxyTable: { // 连接后台 '/api':{ target:"http://new.w ...
- vi 学习记录
i 光标所在前插入 I 光标所在行的第一个非空字符前进入输入模式 a 光标所在后插入 A 光标所在最后插入 o 光标所在列下新增一列并进入输入模式 O 光标所在列上新增一列并进入输入模式 退出 :q, ...
- 紫书 习题 11-1 UVa 821 (Floyd)
水题, Floyd一遍就完了. #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a ...
- 紫书 习题 8-24 UVa 10366 (构造法)
又是一道非常复杂的构造法-- #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a) ...
- [Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...
- Linux的硬链接、软连接与拷贝
Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link).硬链接:创建一个与原文件任何信息都相同的目标文件(文件名可能不同,自由设定).硬连接的 ...
- 关于ValueAnimation以及Interpolator +Drawable实现的自己定义动画效果
ValueAnimation : Android中的属性动画,他跟objectAnimation是比补间动画拥有更强大的功能,能够操作对象.所以我们能够在自 定义View中通过他们来实现些特别的功能. ...