一、进程和线程的概念

1.进程和线程的定义

  进程并不只是一段可以运行的代码,也包含了运行代码所需要的资源。

  在操作系统来看,进程是资源管理的最小单元,而我们又知道,线程是程序执行的最小单元。

  话说回来,Linux系统至少有一个进程,一个程序可以对应多个进程,一个进程只能对应一个程序,一个进程包含一个或多个线程。

  所以,一个进程的组成实体实际是两大部分:资源的集合和线程的集合。进程中的线程是动态的对象, 代表了进程指令的执行。资源,包括地址空间、打开的文件、用户信息等等,由进程内的线程共享。线程有自己的私有数据:程序计数器,栈空间以及寄存器。

  总结来说,在linux系统下,进程主要具有以下四个要素:

  1)有一个程序供其运行。这段程序不一定是进程所专有,可以与其他进程一起使用;

  2)有起码的“私有财产”,这就是进程专用的系统堆栈空间;

  3)有“身份证”,也就是task_struct结构,也称之为“进程控制块”(PCB)。有了这个数据结构,进程才能成为内核调度的一个基本单位接受内核的调度。同时,这个结构又是进程的“财产登记卡”,记录着进程占用的各项资源。

  4)有独立的存储空间,意味着拥有专有的用户空间;还意味着除前述的系统空间堆栈外还有其专有的用户空间堆栈。(PS:进程的系统空间是不能独立的,除了各进程独有的系统堆栈空间外,任何进程都不可能直接改变用户空间的内容)。

  以上条件是必要条件,缺少其中一条,都不能称其为“进程”。如果只缺第四条,那就称为“线程”。

  在linux系统中,“进程”和“任务”是同一个意思,在内核的代码中常混用这两个名词和概念。例如每个进程都要有一个task_struct数据结构,而其号码却又是pid、唤醒一个睡眠进程的函数名为wake_up_process()。

  之所以有这样的情况是因为,linux源自Unix和i386系统结构,而unix中的进程在Intel的技术资料中称为“任务”,严格来说有点区别,但是对于系统的实现来说是一回事。

2.task_struct的定义

  操作系统通过一个称作PCB(Process Control Block,进程控制块)的数据结构管理一个进程,也称为tesk_struct结构体,这个结构体包含了一个进程所需的所有信息。它定义在linux-2.6.38.8/include/linux/sched.h文件中。

  除了最起码的“财产”,即task_struct数据结构和系统堆栈之外,一个进程还要有一些附加的资源。例如,进程拥有堵路的存储空间,就要有用于虚拟内存管理的mm_struct数据结构以及附属的vm_area数据结构,以及相应的页面目录项和页面表,

  但这些都从属于task_struct资源。task_struct数据结构在这方面相当于登记卡的作用,其具体结构源代码如下:

struct task_struct
{
/*
* offsets of these are hardcoded elsewhere - touch with care
*/
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
unsigned long flags; /* per process flags, defined below */
int sigpending;
mm_segment_t addr_limit; /* thread address space:
0-0xBFFFFFFF for user-thead
0-0xFFFFFFFF for kernel-thread
*/
struct exec_domain *exec_domain;
volatile long need_resched;
unsigned long ptrace;
int lock_depth; /* Lock depth */ /*
* offset 32 begins here on 32-bit platforms. We keep
* all fields in a single cacheline that are needed for
* the goodness() loop in schedule().
*/
long counter;
long nice;
unsigned long policy;
struct mm_struct *mm;
int has_cpu, processor;
unsigned long cpus_allowed; struct list_head run_list;
unsigned long sleep_time; struct task_struct *next_task, *prev_task;
struct mm_struct *active_mm;
/* task state */
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */ unsigned long personality;
int dumpable:;
int did_exec:;
pid_t pid;
pid_t pgrp;
pid_t tty_old_pgrp;
pid_t session;
pid_t tgid;
/* boolean value for session group leader */
int leader;
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->p_pptr->pid)
*/
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
struct list_head thread_group;
/* PID hash table linkage. */
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;
wait_queue_head_t wait_chldexit; /* for wait4() */
struct semaphore *vfork_sem; /* for vfork() */
unsigned long rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct tms times;
unsigned long start_time;
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:;
/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:;
struct user_struct *user;
/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[];
/* file system info */
int link_count;
struct tty_struct *tty; /* NULL if no tty */
unsigned int locks; /* How many file locks are being held */
/* ipc stuff */
struct sem_undo *semundo;
struct sem_queue *semsleeping;
/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* signal handlers */
spinlock_t sigmask_lock; /* Protects signal and blocked */
struct signal_struct *sig; sigset_t blocked;
struct sigpending pending; unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask; /* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty */
spinlock_t alloc_lock;
};

下面对结构中几个重要的成分做介绍:

  1)state(第6行)

  该变量表示进程当前运行的状态,具体定义如下:

1 #define TASK_RUNNING              0
2 #define TASK_INTERRUPTIBLE 1
3 #define TASK_UNINTERRUPTIBLE 2
4 #define TASK_ZOMBIE 4 //僵尸进程
5 #define TASK_STOPPED 8

  状态TASK_INTERRUPTIBLE和TASK_UNINTERRUPTIBLE均表示进程处于睡眠状态。但是TASK_UNINTERRUPTIBLE表示进程处于“深度睡眠”,而不受“信号”(signal,也称软中断)的打扰,而TASK_INTERRUPTIBLE则可以因信号的到来而被唤醒。内核中提供了不同的函数,让一个进程进入不同深度的睡眠或将进程从睡眠中唤醒。具体地说,函数sleep_on()和wake_up()用于深度睡眠,而interruptible_sleep_on()和wake_up_interruptible()则用于浅度睡眠。深度睡眠一般只用于临界区和关键性的部位,而“可中断”的睡眠那就是通用的了。特别地,当进程在“阻塞性”的系统调用中等待某一事件发生时,应该进入可中断睡眠,否则就不能对别的中断做出反应,别的进程就不能通过发一个信号来“杀掉”这个进程了。

  TASK_RUNNING状态并不是表示一个进程正在执行中,或者说这个进程就是“当前进程”,而是表示这个进程可以被调度执行而成为当前进程。当进程处于这样的可执行(或就绪)状态时,内核就将该进程的task_struct结构通过其队列头(见第30行)挂入一个“运行队列”。

  TASK_ZOMBIE状态表示进程已经“去世”而户口尚未注销。

  TASK_STOPPED主要用于调试的目的,进程接收到 一个SIGSTOP信号后就将运行状态改成     TASK_STOPPED而进入“挂起”状态,然后在接收到SIGCONT信号时又恢复继续运行。

  2)flags(第7行)

  flags反应进程状态相关信息,但并不是运行状态,而是与管理有关的其他信息。

 1 #define PF_ALIGNWARN        0x00000001      /*print alignment warning msgs*/
2 #define PF_STARTING 0x00000002 /*being created*/
3 #define PF_EXITING 0x00000004 /*getting shut down*/
4 #define PF_FORKNOEXEC 0x00000040 /*forked but did not exec*/
5 #define PF_SUPERPRIV 0x00000100 /*uses super-user privileges*/
6 #define PF_DUMPCORE 0x00000200 /*dumped core*/
7 #define PF_SIGNALED 0x00000400 /*killed by signal*/
8 #define PF_MEMALLOC 0x00000800 /*Allocating memory*/
9 #define PF_VFORK 0x00001000 /*wake up parent in mm_release*/
10 #define PF_USEDFPU 0x00100000 /*task used FPU this quantum(SMP)*/

  3)sigpending(第8行)

  表示进程收到了“信号”但是尚未处理。

  4)counter(第23行)

  与进程调度有关

  5)add_limit

  虚拟地址空间的上限,对进程而言是其用户空间的上限,所以是0xbfff ffff;对内核线程而言则是系统空间额的上限,所以是0xffff ffff

  6)binfnt

  应用程序的文件格式。

  7)pgrp,session,leader

  当一个用户登录时,就开始了一个进程组(session),此后创建的进程都属于这同一个session。

  8)user

  指向一个user_struct结构,该数据结构代表进程所属的用户。

  9)rlim

  这是一个结构数组,表明进程岁各种资源的使用数量所受的限制。

3.task_struct如何在linux中被管理

  task_struct可以以三种方式被管理,他们分别是:树,哈希表和链表,具体如下图,其中圆代表一个个进程的task_struct。

linux进程管理之概念(一)的更多相关文章

  1. Linux进程管理(一、 基本概念和数据结构)

    被问到两个问题, 后来想了下如果要讲明白还不太容易,需要对进程的概念,进程管理有清晰的认识: 1. 父进程打开了一个文件,然后通过fork创建一个子进程, 子进程是否共享父进程的文件描述符? 2. 在 ...

  2. Linux进程管理子系统分析【转】

    本文转载自:http://blog.csdn.net/coding__madman/article/details/51298732 Linux进程管理: 进程与程序: 程序:存放在磁盘上的一系列代码 ...

  3. Linux进程管理 (2)CFS调度器

    关键词: 目录: Linux进程管理 (1)进程的诞生 Linux进程管理 (2)CFS调度器 Linux进程管理 (3)SMP负载均衡 Linux进程管理 (4)HMP调度器 Linux进程管理 ( ...

  4. Linux进程管理与调度-之-目录导航【转】

    转自:http://blog.csdn.net/gatieme/article/details/51456569 版权声明:本文为博主原创文章 && 转载请著名出处 @ http:// ...

  5. [转帖]linux进程管理总结

    linux进程管理总结 https://www.cnblogs.com/chenfangzhi/p/10660355.html 高手总结的.. 看出来我是菜逼. 目录 一.进程相关的概念 二.关闭会话 ...

  6. 12个Linux进程管理命令介绍(转)

    12个Linux进程管理命令介绍 [日期:2015-06-02] 来源:Linux中国  作者:Linux [字体:大 中 小]   执行中的程序在称作进程.当程序以可执行文件存放在存储中,并且运行的 ...

  7. Linux进程管理知识整理

    Linux进程管理知识整理 1.进程有哪些状态?什么是进程的可中断等待状态?进程退出后为什么要等待调度器删除其task_struct结构?进程的退出状态有哪些? TASK_RUNNING(可运行状态) ...

  8. Linux性能及调优指南(翻译)之Linux进程管理

    本文为IBM RedBook的Linux Performanceand Tuning Guidelines的1.1节的翻译原文地址:http://www.redbooks.ibm.com/redpap ...

  9. Linux进程管理专题

    Linux进程管理 (1)进程的诞生介绍了如何表示进程?进程的生命周期.进程的创建等等? Linux支持多种调度器(deadline/realtime/cfs/idle),其中CFS调度器最常见.Li ...

随机推荐

  1. pip常见用法汇总

    1.pip安装 yum -y install epel-release && yum -y install python-pip 2.pip安装软件 (1)安装单个软件:pip ins ...

  2. web_custom_request函数做get接口测试

    最近研究了使用loadrunner做接口测试,刚开始一直不成功,后来加了QQ群,遇到大神了,经指导终于成功 下面是具体实例代码: //{"signIOS":1,"sign ...

  3. 为什么要重写toString()方法

    因为在System.out.println(类的对象名)时,类的对象名是个引用,如果不重写,就输出引用地址. 其实实际是这样的System.out.println(类的对象名.toString()), ...

  4. Mysql怎么样避免全表扫描,sql查询优化

    对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引: 尝试下面的技巧以避免优化器错选了表扫描: 使用ANALYZE TABLE tbl_name为扫 ...

  5. MRv2 工作机制 、 公平调度器、MR压缩、边数据

    对于节点数超过 4000 的大型集群,前一节描述的 MapReduce 系统开始面临着扩展的瓶颈. 2010 年 Yahoo 的团队开始设计下一代的 MapReduce. (Yet Another R ...

  6. 上传文件 nginx 413错误

    nginx : 413 Request Entity Too Large 上传文件过程发生413 Request Entity Too Large错误,翻译为请求实体过大,断定为nginx限制了请求体 ...

  7. DNS Tunnel判定方法

    DNS Tunnel判定方法: 1.查询DNS请求的域名是否存在备案: 2.查询DNS请求的域名情报信息(以及域名的alex排名): 3.查看相同主域名下子域名编码格式及长度:(存在Base32和Ba ...

  8. 山东理工oj--1912--IP地址(水题)

     IP地址 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 2011年2月3日,国际互联网名称与数字地址分配机构(ICANN) ...

  9. (六)api网关服务 zuul-过滤器

    开启上文服务: Zuul给我们的第一印象通常是这样:它包含了对请求的路由和过滤两个功能,其中路由功能负责将外部请求转发到具体的微服务实例上,是实现外部访问统一入口的基础.过滤器功能则负责对请求的处理过 ...

  10. sql server 数据库distinct的用法

    Distinct:用来过滤重复记录.往往只用它来返回不重复记录的条数,而不是用它来返回不重记录的所有值.其原因是distinct只有用二重循环查询来解决,而这样对于一个数据量非常大的站来说,无疑是会直 ...