ICPC (Isles of Coral Park City) consist of several beautiful islands. The citizens requested construction of bridges between islands to resolve inconveniences of using boats between islands, and they demand that all the islands should be reachable from any other islands via one or more bridges. The city mayor selected a number of pairs of islands, and ordered a building company to estimate the costs to build bridges between the pairs. With this estimate, the mayor has to decide the set of bridges to build, minimizing the total construction cost. However, it is difficult for him to select the most cost-efficient set of bridges among those connecting all the islands. For example, three sets of bridges connect all the islands for the Sample Input 1. The bridges in each set are expressed by bold edges in Figure F.1.
Figure F.1. Three sets of bridges connecting all the islands for Sample Input 1
As the first step, he decided to build only those bridges which are contained in all the sets of bridges to connect all the islands and minimize the cost. We refer to such bridges as no alternative bridges. In Figure F.2, no alternative bridges are drawn as thick edges for the Sample Input 1, 2 and 3.
Figure F.2. No alternative bridges for Sample Input 1, 2 and 3
Write a program that advises the mayor which bridges are no alternative bridges for the given input.
Input
The input file contains several test cases, each of them has the following format.
N M S1 D1 C1 . . . SM DM CM
The first line contains two positive integers N and M. N represents the number of islands and each island is identified by an integer 1 through N. M represents the number of the pairs of islands between which a bridge may be built. Each line of the next M lines contains three integers Si, Di and Ci (1 ≤ i ≤ M) which represent that it will cost Ci to build the bridge between islands Si and Di. You may assume 3 ≤ N ≤ 500, N − 1 ≤ M ≤ min(50000,N(N − 1)/2), 1 ≤ Si < Di ≤ N, and 1 ≤ Ci ≤ 10000. No two bridges connect the same pair of two islands, that is, if i ̸= j and Si = Sj, then Di ̸= Dj. If all the candidate bridges are built, all the islands are reachable from any other islands via one or more bridges.
Output
For each test case, output two integers, which mean the number of no alternative bridges and the sum of their construction cost, separated by a space.
Sample Input
4 4 1 2 3 1 3 3 2 3 3 2 4 3 4 4 1 2 3 1 3 5 2 3 3 2 4 3 4 4 1 2 3 1 3 1 2 3 3 2 4 3 3 3 1 2 1 2 3 1 1 3 1
Sample Output
1 3 3 9 2 4 0 0

分析:

题意
给定一个N个点,M条边的简单连通无向图。
对于一个无向图来说,它的最小生成树可能不是唯一的。
问在它的所有的最小生成树中共有的边是哪几条,输出边数和权值之和。
3<=N<=500, N-1<=M<=min{50000, N(N-1)/2}
思路
首先跑一遍Kruskal,得到最小生成树的权值。
之后尝试删去图中的边,如果某一条边被删去后,最小生成树的值发生了变化(一定变大),那么说明这条边是在所有的最小生成树中都不可或缺的,那么就把这条边加入到答案中。
注意到第一次Kruskal得到的边已经包含了所有的答案,因此只要枚举这里的N-1条边即可。
边排序的复杂度被均摊了,并查集的复杂度可以忽略,因此总的复杂度是O(NM)

注意:重载运算符比cmp快一点

还有就是用一个数组存下第一次MST用到的边(开始没有存起来,直接标记,超时。。。。。。。。。)

code:

#include <iostream>
#include <cstdio>
#include<stdio.h>
#include<algorithm>
#include<cstring>
#include<math.h>
#include<memory>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
#define max_v 50010
#define max_n 510
struct edge
{
int x,y,w;
bool operator<(const edge& b) const
{
return w<b.w;
}
} e[max_v];
int possEdge[max_n];//保存第一次MST用到的边 很重要
int pa[max_n];
int cnt,minv;
int n,m;
int c,wsum;
void init()
{
for(int i=;i<=n;i++)
pa[i]=i;
}
int find_set(int x)
{
if(x!=pa[x])
pa[x]=find_set(pa[x]);
return pa[x];
}
int union_set(int x,int y)
{
x=find_set(x);
y=find_set(y);
if(x==y)
return ;
pa[x]=y;
return ;
}
void firstkrus()
{
cnt=;
minv=;
init();
for(int i=; i<m; i++)
{
if(union_set(e[i].x,e[i].y))
{
minv+=e[i].w;
possEdge[cnt++]=i;
if(cnt==n-)
break;
}
}
}
bool krusWithout(int ce)
{
init();
int sum=,ct=;
for(int i=; i<m; i++)
{
if(i==ce)
continue;
if(union_set(e[i].x,e[i].y))
{
ct++;
sum+=e[i].w;
if(sum>minv)
return false;
if(ct==cnt)
return true;
}
}
return false;
}
void trycut()
{
c=;
wsum=;
for(int i=; i<cnt; i++)
{
if(!krusWithout(possEdge[i]))
{
c++;
wsum+=e[possEdge[i]].w;
}
}
printf("%d %d\n",c,wsum);
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
for(int i=; i<m; i++)
scanf("%d %d %d",&e[i].x,&e[i].y,&e[i].w);
sort(e,e+m);
firstkrus();
trycut();
}
return ;
}

UVALive - 6837 Kruskal+一点性质(暴力枚举)的更多相关文章

  1. Gym 101194L / UVALive 7908 - World Cup - [三进制状压暴力枚举][2016 EC-Final Problem L]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  2. P1217 [USACO1.5]回文质数 Prime Palindromes(技巧+暴力枚举+线性筛)

    技巧:就是偶数位的回文数字一定不是质数---------证明:奇数位之和sum1==偶数位之和sum2的数字可以被11整除.(11除外,这是一个坑点) 最高位,最低位必须是 1, 3, 7, 9 暴力 ...

  3. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  4. Codeforces Round #266 (Div. 2)B(暴力枚举)

    很简单的暴力枚举,却卡了我那么长时间,可见我的基本功不够扎实. 两个数相乘等于一个数6*n,那么我枚举其中一个乘数就行了,而且枚举到sqrt(6*n)就行了,这个是暴力法解题中很常用的性质. 这道题找 ...

  5. CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)

    题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...

  6. 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)

    /* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...

  7. HNU 12886 Cracking the Safe(暴力枚举)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...

  8. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

  9. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

随机推荐

  1. 3.springioc bean 的几个属性

    1.lazy-init="false" 默认值为false,指的是bean的创建时机的spring容器一启动就会加载这些类.有点是及时发现bean的相关错误,因为spring容器启 ...

  2. LinkedList实现队列存储结构

    package com.tercher.demo; import java.util.LinkedList; public class Queue { //用LinkedList 实现队列的数据存储结 ...

  3. jQuery和MVVM类框架的编程区别点

    本文说的mvvm框架以react为列,其他应该也是类似的: react实际上仅仅是帮助我们再View层简化,让我们仅仅需要专注数据,只要数据改变,所有的视图就会自己跟随着改变, 本人自己做react项 ...

  4. Spring的大框架

    初识Spring: Spring作者:Rod Johnson Spring框架由20个模块组成,这些模块分成六个部分,分别是Core Container,Data Access/Integration ...

  5. Architecture And Framework

    高屋建瓴 From Up to Down. Outside into inside. Interface-Oriented Framework with dynamic configuration. ...

  6. Android MVC模式和MVP模式的区别

    MVC模式: 1. MVC的所有通信都是单向的. 2. view传送指令到controller(用户也可以直接将指令传到controller). 3. controller完成业务逻辑后要求model ...

  7. 移动端tap事件的封装

    /*封装tap*/ cc.tap = function(dom,callback){ /* * 要求 没有触发 touchmove 事件 * 并且响应速度要比click快 */ if(dom & ...

  8. Java web相关内容

    我们即将学习Java web 这是通过查阅资料找到的和Java web 相关的内容. 一:Java web的含义 JavaWeb,是用Java技术来解决相关web互联网领域的技术总和.web包括:we ...

  9. awk单行脚本快速参考

    AWK单行脚本快速参考 2008年4月28日编辑: Eric Pement eric [at] pement.org 版本 0.26翻译: 董一粟 yisudong [at] gmail.com 最新 ...

  10. ORACLE 11GR2 安装时配置了域,后期删除

    因为用了一个安全平台.此平台居然不支持oracle中的服务吗有"."而这个点就是因为当时安装oracle录入了域.原来以为是修改服务名.百多了很多,最后发现就是删除域即可 感谢此文 ...