luogu 2115 破坏(01分数规划)
题意:给出一个序列,删除一个连续的子串后使得剩下的平均值最小。
典型的01分数规划,令f(x)=(sum1[i]+sum2[j])/(i+j).sum1表示前缀和,sum2表示后缀和,那么我们就相当于求出f(x)的最小值。
令f(x)=y,化简则有(sum1[i]-i*y)+(sum2[j]-j*y)=0,我们二分y,找出满足这个式子的y的最小值。
根据这个式子可以把序列都减去一个y,这样就相当于求新序列的前缀和sum1[i]+sum2[j]>=0.
实际上就是求min(sum1[i]+sum2[j])>=0,转化一下就变成了求新序列的最大子串和的经典DP问题。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], n;
double b[N], dp[N], sum; bool check(double x){
sum=;
FOR(i,,n) b[i]=a[i]-x, sum+=b[i];
double res=-INF;
FO(i,,n) {
dp[i]=max(dp[i-]+b[i],b[i]);
res=max(res,dp[i]);
}
return sum<=res;
}
int main ()
{
scanf("%d",&n);
FOR(i,,n) scanf("%d",a+i);
double l=, r=INF, mid;
FOR(i,,) {
mid=(l+r)/2.0;
if (check(mid)) r=mid;
else l=mid;
}
printf("%.3lf\n",mid);
return ;
}
luogu 2115 破坏(01分数规划)的更多相关文章
- luogu P1768 天路 |01分数规划+负环
题目描述 言归正传,小X的梦中,他在西藏开了一家大型旅游公司,现在,他要为西藏的各个景点设计一组铁路线.但是,小X发现,来旅游的游客都很挑剔,他们乘火车在各个景点间游览,景点的趣味当然是不用说啦,关键 ...
- luogu 4377 Talent show 01分数规划+背包dp
01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp ...
- 洛谷P3778 [APIO2017]商旅——01分数规划
题目:https://www.luogu.org/problemnew/show/P3778 转化有点技巧: 其实直接关注比率的上下两项,也就是盈利和时间: 通过暴枚和 floyd 可以处理出两两点间 ...
- [JSOI 2016] 最佳团体(树形背包+01分数规划)
4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2003 Solved: 790[Submit][Statu ...
- UVA1389 Hard Life (01分数规划+最大流)
UVA1389 Hard Life (01分数规划+最大流) Luogu 题目描述略 题解时间 $ (\frac{\Sigma EdgeCount}{\Sigma PointCount})_{max} ...
- POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9703 Accepted: 3299 ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- 【Earthquake, 2001 Open 】 0-1 分数规划
71 奶牛施工队一场地震把约翰家园摧毁了,坚强的约翰决心重建家园.约翰已经修复了 N 个牧场,他需要再修复一些道路把它们连接起来.碰巧的是,奶牛们最近也成立了一个工程队,专门从事道路修复.而然,奶牛 ...
随机推荐
- 20155316 2016-2017-2 《Java程序设计》第10周学习总结
教材学习内容总结 Java和Android开发学习指南(第二版)第22章 Java 密码技术 教材学习中的问题和解决过程 1.什么叫柯克霍夫原则? 数据的安全基于密钥而不是算法的保密. 也就是说系统的 ...
- 2017 ACM-ICPC 亚洲区(西安赛区)网络赛
A There is a tree with nn nodes, at which attach a binary 64*6464∗64 matrix M_i (1 \le i \le n)M i ...
- (转) PHP 开发者该知道的 5 个 Composer 小技巧
1. 仅更新单个库 只想更新某个特定的库,不想更新它的所有依赖,很简单: composer update foo/bar 此外,这个技巧还可以用来解决“警告信息问题”.你一定见过这样的警告信息: Wa ...
- Scrapy爬豆瓣电影Top250并存入MySQL数据库
d:进入D盘 scrapy startproject douban创建豆瓣项目 cd douban进入项目 scrapy genspider douban_spider movie.douban.co ...
- python终端计算器,还有没其他方法?
import sysdef lt(a, b, c ): if b == "+": return int(a)+int(c) elif b == "-": ret ...
- redis 批量删除操作
redis 批量删除操作 需要在redis里面清空一批数据,redis没有支持通配符删除, 只有del key1 key2 ... 但是可以通配符获取 KEYS PATTERN 然后利用linux管道 ...
- Linux命令之tar命令
[root@linux ~]# tar [-cxtzjvfpPN] 文件与目录 .... 参数: -c :建立一个压缩文件的参数指令(create 的意思): -x :解开一个压缩文件的参数指令! - ...
- 高可用Kubernetes集群-8. 部署kube-scheduler
十.部署kube-scheduler kube-scheduler是Kube-Master相关的3个服务之一,是有状态的服务,会修改集群的状态信息. 如果多个master节点上的相关服务同时生效,则会 ...
- Zabbix自动发现之fping
原文发表于cu:2016-06-21 Zabbix自动发现功能从配置流程上比较简单:Discovery与Action. 在做Zabbix的自动发现验证时,使用"ICMP ping" ...
- Django 使用 Celery 实现异步任务
对于网站来说,给用户一个较好的体验是很重要的事情,其中最重要的指标就是网站的浏览速度.因此服务端要从各个方面对网站性能进行优化,比如可采用CDN加载一些公共静态文件,如js和css:合并css或者js ...