题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143

学到了无向图中点被经过的期望次数和边被经过的期望次数。

一个点被经过的期望次数  就是  与它相连的点被经过的期望次数/那个点的度数  的求和。

https://www.cnblogs.com/owenyu/p/6724721.html这个博客说的很好。

  该博客让我受到的启发就是一个点被经过的期望次数是依赖于与它相连的点的,可是要算它的时候相连点还没算出来,算相连点又要用到它的数据,令人头痛。

    而如果是有向图中,就可以以拓扑序为计算顺序了。

    而再想想无向图中计算的形式,不就很适合列方程吗!还有高斯消元这个好方法去解方程!

列式子可知移项后f [ i ] [ i ]的系数一定是-1。相连点的系数就是1/其度数。

需要注意的是自己一开始就在1点,不需要从别的点走过来就自带1次;

而从n点不能走到其他点!

自己写高斯消元总是犯的错误:第 i 行把第 i 个未知数的系数调成1时   要么倒序,要么另存!

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
int n,m,du[N],u[M],v[M];
double a[N],f[N][N],s[M],ans;
void init()
{
for(int i=;i<n;i++)f[i][i]=-;
f[][n+]=-;
// a[n]=1; //一条边不能从n点走回来!所以算边的时候n点应视为0!
for(int i=;i<=m;i++)
f[u[i]][v[i]]=1.0/du[v[i]],
f[v[i]][u[i]]=1.0/du[u[i]];
}
void gauss()
{
for(int i=;i<n;i++)
{
for(int j=n+;j>=i;j--)f[i][j]/=f[i][i];//要么倒序,要么另存!
for(int j=i+;j<n;j++)
for(int k=n+;k>=i;k--)
f[j][k]-=f[j][i]*f[i][k];
}
for(int i=n-;i;i--)
{
a[i]=f[i][n+];
for(int j=i-;j;j--)
f[j][n+]-=f[j][i]*a[i];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&u[i],&v[i]);
du[u[i]]++;du[v[i]]++;
}
init();gauss();
// for(int i=1;i<=n;i++)
// printf("[%.3lf]",a[i]);printf("\n");
for(int i=;i<=m;i++)
s[i]=a[u[i]]/du[u[i]]+a[v[i]]/du[v[i]];
sort(s+,s+m+);
// for(int i=1;i<=m;i++)
// printf("(%.3lf)",s[i]);printf("\n");
for(int i=,j=m;i<=m;i++,j--)
ans+=s[i]*j;
printf("%.3lf",ans);
return ;
}

bzoj3143游走的更多相关文章

  1. 【Hnoi2013】Bzoj3143 游走

    Position: http://www.lydsy.com/JudgeOnline/problem.php?id=3143 List Bzoj3143 Hnoi2013 游走 List Descri ...

  2. bzoj3143 游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  3. [HNOI2013][BZOJ3143] 游走 - 高斯消元

    题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...

  4. bzoj3143 游走 期望dp+高斯消元

    题目传送门 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得 ...

  5. bzoj3143游走——期望+高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望: 每条 ...

  6. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  7. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

  8. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

  9. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

随机推荐

  1. poj1985 / poj2631(树的直径)

    poj1985 Cow Marathon 树的直径裸题 树的直径的一般求法: 任意一点为起点,dfs/bfs找出与它最远的点$u$ 以$u$为起点,dfs/bfs找出与它最远的点$v$ 则$d(u,v ...

  2. RocEDU.阅读.写作《苏菲的世界》书摘(七)

    * 康德认为"事物本身"和"我眼中的事物"是不一样的.这点很重要.我们永远无法确知事物"本来"的面貌.我们所知道的只是我们眼中"看 ...

  3. 【Java----统计字符串匹配个数】

    org.apache.commons.lang3.StringUtils包带的工具类 StringUtils.countMatches(context, keyword);

  4. mac上 sublime的配置,支持c++11且支持输入

    首先下载mac版本的 sublimetext3 下载链接: https://www.sublimetext.com/3 接着可以按照其他博客的方法来安装一些插件,便于我们的工作和学习 安装sublim ...

  5. Asp.net下拉树实现(Easy UI ComboTree)

    场景描述:某个公司有多个部门并且部门存在子部门,通过一个下拉框选取多个部门,但是如果某个部门的子部门被全部选择,则只取该部门,而忽略子部门.(叶子节点全被选中时,只取父节点) 知识点:ComboTre ...

  6. OpenDayLight Helium安装

    参照:OpenDaylight的Helium(氦)版本安装 下载链接地址为 http://www.opendaylight.org/software/downloads/helium 安装: unzi ...

  7. install flask

    pip install flask -i http://pypi.douban.com/simple

  8. BZOJ 2876 【NOI2012】 骑行川藏

    题目链接:骑行川藏 听说这道题需要一些高数知识 于是膜了一发dalao的题解……然后就没了…… 不要吐槽我的精度TAT……eps设太小了就TLE,大了就Wa……我二分的边界是对着数据卡的…… 下面贴代 ...

  9. Lua中获取table长度

    -- table.getn(tableName) 得到一个table的大小,等同于操作符# -- 要注意的是:该table的key必须是有序的,索引是从1开始的. --例如有序的 local xian ...

  10. HTML之页面镶嵌体验

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...