【BZOJ3667】Rabin-Miller算法(Pollard_rho)

题面

呜,权限题,别问我是怎么做的(我肯定没有权限号啊)

第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数。你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime

第二,如果不是质数,输出它最大的质因子是哪个。

题解

\(Pollard\_rho\)的模板题,权限题什么的烦死了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll e,N,c;
ll Multi(ll a,ll b,ll MOD)
{
ll s=0;
while(b){if(b&1)s=(s+a)%MOD;a=(a+a)%MOD;b>>=1;}
return s;
}
ll fpow(ll a,ll b,ll MOD)
{
ll s=1;
while(b){if(b&1)s=Multi(s,a,MOD);a=Multi(a,a,MOD);b>>=1;}
return s;
}
bool Miller_Rabin(ll x)
{
if(x==2)return true;
for(int tim=10;tim;--tim)
{
ll a=rand()%(x-2)+2;
if(fpow(a,x-1,x)!=1)return false;
ll p=x-1;
while(!(p&1))
{
p>>=1;ll nw=fpow(a,p,x);
if(Multi(nw,nw,x)==1&&nw!=1&&nw!=x-1)return false;
}
}
return true;
}
ll Pollard_rho(ll n,int c)
{
ll i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(Multi(x,x,n)+c)%n;
ll d=__gcd((y-x+n)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
vector<ll> fac;
void Fact(ll n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
ll p=n;while(p>=n)p=Pollard_rho(n,c--);
Fact(p,c);Fact(n/p,c);
}
int main()
{
int T=read();
while(T--)
{
ll n=read();fac.clear();Fact(n,233);
sort(fac.begin(),fac.end());
if(fac.size()==1)puts("Prime");
else printf("%lld\n",fac[fac.size()-1]);
}
return 0;
}

【BZOJ3667】Rabin-Miller算法(Pollard_rho)的更多相关文章

  1. 【BZOJ-3667】Rabin_Miller算法 随机化判素数

    3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 983  Solved: 302[Submit][Status ...

  2. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

  3. 【bzoj3667】Rabin-Miller算法

    3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1200  Solved: 363[Submit][Statu ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. 模式字符串匹配问题(KMP算法)

    这两天又看了一遍<算法导论>上面的字符串匹配那一节,下面是实现的几个程序,可能有错误,仅供参考和交流. 关于详细的讲解,网上有很多,大多数算法及数据结构书中都应该有涉及,由于时间限制,在这 ...

  6. 数论知识总结——史诗大作(这是一个flag)

    1.快速幂 计算a^b的快速算法,例如,3^5,我们把5写成二进制101,3^5=3^1*1+3^2*2+3^4*1 ll fast(ll a,ll b){ll ans=;,a=mul(a,a)))a ...

  7. Leetcode #28. Implement strStr()

    Brute Force算法,时间复杂度 O(mn) def strStr(haystack, needle): m = len(haystack) n = len(needle) if n == 0: ...

  8. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  9. Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了

    作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...

随机推荐

  1. js中对象转化成字符串、数字或布尔值的转化规则

    js中对象可以转化成 字符串.数字.布尔值 一.对象转化成字符串: 规则: 1.如果对象有toString方法,则调用该方法,并返回相应的结果:(代码通常会执行到这,因为在所有对象中都有toStrin ...

  2. flask ssti python2和python3 注入总结和区别

    总结一下flask ssti的注入语句 代码 import uuid from flask import Flask, request, make_response, session,render_t ...

  3. centos7 python2.7.5 升级python3.6.4

    (转)Linux Centos7 升级python2至python3 - 依然范儿特西的文章 - 知乎 https://zhuanlan.zhihu.com/p/33660059 1 查看python ...

  4. Python基本编程题

    问题1:仅使用 Python 基本语法,即不使用任何模块,编写 Python 程序计算下列数学表达式的结果并输出,小数点后保留3位.‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬ ...

  5. java 中的字符串

    创建String对象 String s1="xxx"://创建一个字符串对象“xxx”,名为s1; String s2=new String();//创建一个空字符串对象,名为S2 ...

  6. 自动化运维工具saltstack03 -- 之SaltStack的数据系统

    SaltStack数据系统 saltstack有两种数据系统:grains与pillar 1.SaltStack数据系统之grains grains可以收集minion端的静态数据(即机器启动时收集一 ...

  7. WebGL中使用window.requestAnimationFrame创建主循环

    今天总结记录一下WebGL中主循环的创建和作用.我先说明什么是主循环,其实单纯的webgl不存在主循环这个概念,这个概念是由渲染引擎引入的,主循环就是利用一个死循环或无截止条件的递归达到定时刷新can ...

  8. 个人安装ss的一个记录

    在ubuntu16.04安装ss服务.由于lantern最近极其不稳定(我还花钱的qaq),经常断联以至于几乎废了,莫得办法,只好花钱搭一个了orz...呵,贫穷.... 安装shadowsocks ...

  9. TW实习日记:第六天

    今日的一整天都是在开发微信相关的接口,因为项目的系统是嵌在企业微信中,所以不可避免的要产生微信UserID和企业系统ID的匹配关系,那么就需要用手机号或是邮箱这种两边都存在的唯一参数进行匹配.然后再将 ...

  10. Pairs Forming LCM LightOJ - 1236 素因子分解

    Find the result of the following code: long long pairsFormLCM( int n ) {    long long res = 0;    fo ...