链接 :



http://acm.hdu.edu.cn/showproblem.php?pid=4497

假设G不是L的约数 就不可能找到三个数。

L的全部素因子一定包括G的全部素因子 而且次方数一定大于等于G的。仅仅须要三个数 对于每个素因子的次方数 三个的最小值是G的,最大值是L的。考虑三个相应的次方数都不一样。那么当中两个是确定的 一个是G的一个是L的 剩下的一个在G和L的之间。

算上排列 总共同拥有6种。或者当中两个是一样的,那么也有6种情况。

最后能够合并计算。

//#pragma comment(linker, "/STACK:10240000,10240000")
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
#define mod 4294967296
#define MAX 0x3f3f3f3f
#define lson o<<1, l, m
#define rson o<<1|1, m+1, r
#define SZ(x) ((int)ans.size())
#define MAKE make_pair
#define INFL 0x3f3f3f3f3f3f3f3fLL
#define mem(a) memset(a, 0, sizeof(a))
const double pi = acos(-1.0);
const double eps = 1e-9;
const int N = 200005;
const int M = 20005;
typedef __int64 ll;
using namespace std; ll a, b;
struct C {
ll num, cnt;
} s[N], t[N];
int T; int Ini(ll a, C* f) {
int tmp = sqrt(1.0*a + 0.5), e = 0;
for(int i = 2; i <= tmp; i++) {
if(a % i == 0) {
int k = 0;
while(a % i == 0) {
k++;
a /= i;
}
f[e].num = i;
f[e++].cnt = k;
}
}
if(a != 1) {
f[e].cnt = 1;
f[e++].num = a;
}
return e; } int main() { //freopen("in.txt","r",stdin);
cin >> T;
while(T--) {
cin >> a >> b;
if(b % a) {
puts("0");
continue;
}
mem(s);
mem(t);
int n = Ini(a, s);
int m = Ini(b, t); ll ans = 1, x;
int fr = 0;
for(int i = 0; i < m; i++) {
if(t[i].num == s[fr].num) {
x = t[i].cnt - s[fr].cnt;
fr++;
if(x) ans *= x * 6;
} else ans *= t[i].cnt * 6; }
cout << ans << endl;
}
return 0;
}

HDU 4497 GCD and LCM (分解质因数)的更多相关文章

  1. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  2. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  3. HDU 4497 GCD and LCM (数论)

    题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...

  4. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  6. hdu 4497 GCD and LCM (非原创)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  7. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  8. HDU 4497 GCD and LCM (数学,质数分解)

    题意:给定G,L,分别是三个数最大公因数和最小公倍数,问你能找出多少对. 析:数学题,当时就想错了,就没找出规律,思路是这样的. 首先G和L有公因数,就是G,所以就可以用L除以G,然后只要找从1-(n ...

  9. hdu 4497 GCD and LCM 质因素分解+排列组合or容斥原理

    //昨天把一个i写成1了 然后挂了一下午 首先进行质因数分解g=a1^b1+a2^b2...... l=a1^b1'+a2^b2'.......,然后判断两种不可行情况:1,g的分解式中有l的分解式中 ...

随机推荐

  1. destoon的如何显示tag生成的sql语句

    destoon 如何显示tag生成的sql语句 在tag.func.php中第117行加入 echo $query;  就只可以了

  2. struts2请求两次即action方法执行两次

    如果方法使用get开头,也会出现重复执行问题....对struts2无语!!! [转]http://www.xuebuyuan.com/301066.html 就把get开头的方法修改了一下,程序就运 ...

  3. PLSQL连接本机oracle 11g 64 数据库的步骤

    1.登录PL/SQL Developer 这里省略Oracle数据库和PL/SQL Developer的安装步骤,注意在安装PL/SQL Developer软件时,不要安装在Program Files ...

  4. VxWorks中logMsg与printf的区别

    printf( ) - write a formatted string to the standard output stream (ANSI). logMsg( ) does not actual ...

  5. #include<algorithm>里的函数

    #include<algorithm>里的函数   #include<algorithm>     非修改性序列操作(12个)   循环 对序列中的每个元素执行某操作 for_ ...

  6. Makefile学习之路——2

    让你的makefile更专业. 在上一个Makefile所在目录下通过touch命令创建一个clean文件,执行make clean,将发现make总是提示clean文件是最新的,而不是按我们期望的那 ...

  7. 基于jquery带时间轴的图片轮播切换代码

    基于jquery图片标题随小圆点放大切换.这是是一款带时间轴的图片轮播切换代码.效果图如下: 在线预览   源码下载 实现的代码. html代码: <div id="decoroll2 ...

  8. css让footer永远保持在页面底部

    案例1:仅仅保存在页面底部.不固定. 思路: html: <div class="body"> <header>我是头部</header> &l ...

  9. DHCP服务器-DNS服务器-Samba服务器

    DHCP服务器 DHCP在管理网络配置方面很有作用,特别是一个当一个网络的规模较大时,使用DHCP可极大的减少 管理员的工作量. DHCP分为两部分:服务端和客户端.服务端负责集中管理可动态分配的IP ...

  10. si4438 cca 侦听

    /* set GPIO0 for RSSI interrupt / CCA */txbuf[0] = CMD_GPIO_PIN_CFG;txbuf[1] = 27; /* GPIO[0] = 27: ...