http://blog.csdn.net/dcrmg/article/details/53677739

1. 基于直方图均衡化的图像增强

 
直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观视觉效果的目的。对比度较低的图像适合使用直方图均衡化方法来增强图像细节。
 
彩色图像的直方图均衡化实现:
  1. #include <opencv2/highgui/highgui.hpp>
  2. #include <opencv2/imgproc/imgproc.hpp>
  3. #include <iostream>
  4. using namespace cv;
  5. int main(int argc, char *argv[])
  6. {
  7. Mat image = imread("Test.jpg", 1);
  8. if (image.empty())
  9. {
  10. std::cout << "打开图片失败,请检查" << std::endl;
  11. return -1;
  12. }
  13. imshow("原图像", image);
  14. Mat imageRGB[3];
  15. split(image, imageRGB);
  16. for (int i = 0; i < 3; i++)
  17. {
  18. equalizeHist(imageRGB[i], imageRGB[i]);
  19. }
  20. merge(imageRGB, 3, image);
  21. imshow("直方图均衡化图像增强效果", image);
  22. waitKey();
  23. return 0;
  24. }
 
直方图均衡化增强前原图像:
 
直方图均衡化增强后效果:
 
 

2. 基于拉普拉斯算子的图像增强

 
使用中心为5的8邻域拉普拉斯算子与图像卷积可以达到锐化增强图像的目的,拉普拉斯算子如下图所示:
      
  
 
拉普拉斯算子可以增强局部的图像对比度:
  1. #include <opencv2/highgui/highgui.hpp>
  2. #include <opencv2/imgproc/imgproc.hpp>
  3. #include <iostream>
  4. using namespace cv;
  5. int main(int argc, char *argv[])
  6. {
  7. Mat image = imread("Test.jpg", 1);
  8. if (image.empty())
  9. {
  10. std::cout << "打开图片失败,请检查" << std::endl;
  11. return -1;
  12. }
  13. imshow("原图像", image);
  14. Mat imageEnhance;
  15. Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, 0, 5, 0, 0, -1, 0);
  16. filter2D(image, imageEnhance, CV_8UC3, kernel);
  17. imshow("拉普拉斯算子图像增强效果", imageEnhance);
  18. waitKey();
  19. return 0;
  20. }
拉普拉斯算子增强前原图像:
 
拉普拉斯算子增强后效果:
 

3. 基于对数Log变换的图像增强

 

对数变换可以将图像的低灰度值部分扩展,显示出低灰度部分更多的细节,将其高灰度值部分压缩,减少高灰度值部分的细节,从而达到强调图像低灰度部分的目的。变换方法:

对数变换对图像低灰度部分细节增强的功能过可以从对数图上直观理解:

x轴的0.4大约对应了y轴的0.8,即原图上0~0.4的低灰度部分经过对数运算后扩展到0~0.8的部分,而整个0.4~1的高灰度部分被投影到只有0.8~1的区间,这样就达到了扩展和增强低灰度部分,压缩高灰度部分的值的功能。

从上图还可以看到,对于不同的底数,底数越大,对低灰度部分的扩展就越强,对高灰度部分的压缩也就越强。

  1. #include <opencv2/highgui/highgui.hpp>
  2. #include <opencv2/imgproc/imgproc.hpp>
  3. using namespace cv;
  4. int main(int argc, char *argv[])
  5. {
  6. Mat image = imread("Test.jpg");
  7. Mat imageLog(image.size(), CV_32FC3);
  8. for (int i = 0; i < image.rows; i++)
  9. {
  10. for (int j = 0; j < image.cols; j++)
  11. {
  12. imageLog.at<Vec3f>(i, j)[0] = log(1 + image.at<Vec3b>(i, j)[0]);
  13. imageLog.at<Vec3f>(i, j)[1] = log(1 + image.at<Vec3b>(i, j)[1]);
  14. imageLog.at<Vec3f>(i, j)[2] = log(1 + image.at<Vec3b>(i, j)[2]);
  15. }
  16. }
  17. //归一化到0~255
  18. normalize(imageLog, imageLog, 0, 255, CV_MINMAX);
  19. //转换成8bit图像显示
  20. convertScaleAbs(imageLog, imageLog);
  21. imshow("Soure", image);
  22. imshow("after", imageLog);
  23. waitKey();
  24. return 0;
  25. }
对数Log变换增强前原图像:
 
对数Log变换增强后效果:
 
对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好。
 
 

4. 基于伽马变换的图像增强

 

伽马变换主要用于图像的校正,将灰度过高或者灰度过低的图片进行修正,增强对比度。变换公式就是对原图像上每一个像素值做乘积运算:

伽马变换对图像的修正作用其实就是通过增强低灰度或高灰度的细节实现的,从伽马曲线可以直观理解:

γ值以1为分界,值越小,对图像低灰度部分的扩展作用就越强,值越大,对图像高灰度部分的扩展作用就越强,通过不同的γ值,就可以达到增强低灰度或高灰度部分细节的作用。

伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于于相机过曝)情况下的图像增强效果明显。

 
  1. #include <opencv2/highgui/highgui.hpp>
  2. #include <opencv2/imgproc/imgproc.hpp>
  3. using namespace cv;
  4. int main(int argc, char *argv[])
  5. {
  6. Mat image = imread("Test.jpg");
  7. Mat imageGamma(image.size(), CV_32FC3);
  8. for (int i = 0; i < image.rows; i++)
  9. {
  10. for (int j = 0; j < image.cols; j++)
  11. {
  12. imageGamma.at<Vec3f>(i, j)[0] = (image.at<Vec3b>(i, j)[0])*(image.at<Vec3b>(i, j)[0])*(image.at<Vec3b>(i, j)[0]);
  13. imageGamma.at<Vec3f>(i, j)[1] = (image.at<Vec3b>(i, j)[1])*(image.at<Vec3b>(i, j)[1])*(image.at<Vec3b>(i, j)[1]);
  14. imageGamma.at<Vec3f>(i, j)[2] = (image.at<Vec3b>(i, j)[2])*(image.at<Vec3b>(i, j)[2])*(image.at<Vec3b>(i, j)[2]);
  15. }
  16. }
  17. //归一化到0~255
  18. normalize(imageGamma, imageGamma, 0, 255, CV_MINMAX);
  19. //转换成8bit图像显示
  20. convertScaleAbs(imageGamma, imageGamma);
  21. imshow("原图", image);
  22. imshow("伽马变换图像增强效果", imageGamma);
  23. waitKey();
  24. return 0;
  25. }

伽马变换增强前原图像:

 
伽马变换增强后效果:
 
 
版权声明:本文为博主原创文章,转载请注明出处。

OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)的更多相关文章

  1. 图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)

    一.图像增强算法原理 图像增强算法常见于对图像的亮度.对比度.饱和度.色调等进行调节,增加其清晰度,减少噪点等.图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则 ...

  2. 【OpenCV】图像增强---灰度变换、直方图均衡化

    图像增强的目的:改善图像的视觉效果或使图像更适合于人或机器的分析处理.通过图像增强,可以减少图像噪声,提高目标与背景的对比度,也可以增强或抑制图像中的某些细节.  ------------------ ...

  3. OpenCV计算机视觉学习(9)——图像直方图 & 直方图均衡化

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 1, ...

  4. 【图像处理】基于OpenCV底层实现的直方图匹配

    image processing 系列: [图像处理]图片旋转 [图像处理]高斯滤波.中值滤波.均值滤波 直方图匹配算法.又称直方图规定化.简单说.就是依据某函数.或者另外一张图片的引导,使得原图改变 ...

  5. OpenCV-跟我一起学数字图像处理之直方图均衡化

    从这篇博文开始,小生正式从一个毫不相干专业转投数字图像处理.废话不多说了,talk is cheap. show me the code. 直方图均衡化目的 由于一些图像灰度的分布过于集中,这样会导致 ...

  6. Win8Metro(C#)数字图像处理--2.30直方图均衡化

    原文:Win8Metro(C#)数字图像处理--2.30直方图均衡化 [函数名称] 直方图均衡化函数HistogramEqualProcess(WriteableBitmap src) [算法说明] ...

  7. openCV中直方图均衡化算法的理解

    直方图均衡化就是调整灰度直方图的分布,即将原图中的灰度值映射为一个新的值.映射的结果直观表现是灰度图的分布变得均匀,从0到255都有分布,不像原图那样集中.图像上的表现就是对比度变大,亮的更亮,暗的更 ...

  8. OpenCV——直方图均衡化(用于图像增强)

    #include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespac ...

  9. 灰度图像--图像增强 直方图均衡化(Histogram equalization)

    灰度图像--图像增强 直方图均衡化(Histogram equalization) 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些 ...

随机推荐

  1. echarts实现柱状图分页展示

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. django restframework 教程之Serialization(序列化)

    介绍 本教程将会通过创建一个简单的粘贴代码项目,突出显示WebAPI,过程中,会介绍组成REST框架的各种组件,让你全面了解如何配合使用. 环境设置 建议使用virtualenv建立新的虚拟环境,确保 ...

  3. RxJava && Agera 从源码简要分析基本调用流程(2)

    版权声明:本文由晋中望原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/124 来源:腾云阁 https://www.qclo ...

  4. css选择器的性能

    性能排序: 1.id选择器(#myid) 2.类选择器(.myclassname) 3.标签选择器(div,h1,p) 4.相邻选择器(h1+p) 5.子选择器(ul < li) 6.后代选择器 ...

  5. Hibernate插入、查询、删除操作 HQL

    Hibernate的所有的操作都是通过Session完成的. 基本步骤如下: 1:通过配置文件得到SessionFactory: SessionFactory sessionFactory=new C ...

  6. crossdomain.xml跨域配置文件的安全注意事项

    零.绪论: 对WEB中的FLASH确实了解不多,对程序中的跨域配置也了解不多,这是自己以前写的一篇笔记,到现在也还了解不深,勉强记下来罢了,备忘. 一.什么是crossdomain.xml?这是一个f ...

  7. 微信小游戏 查看egret的小游戏支持库版本

    在开发者工具 console输入egret.wxgame

  8. 【Android】保存Bitmap到SD卡

    1.打开读写SD卡的权限 需要在AndroidManifest.xml加入如下代码: <uses-permission android:name="android.permission ...

  9. Unity3D笔记八 Unity生命周期及动画学习

    Unity脚本从唤醒到销毁有着一套比较完善的生命周期,添加任何脚本都必须遵守自身生命周期法则.下面介绍一下生命周期中由系统自身调用的几个比较重要的方法.  Update(){}.正常更新,用于更新逻 ...

  10. Web安全开发建议

    版权声明:原创作品,如需转载,请与作者联系.否则将追究法律责任. Web安全问题,很多时候会被人所忽略,安全漏洞造成了很多不必要的维护和开发任务,产生的问题有时候更是致命的. 实际上,只要我们养成一些 ...