OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)
http://blog.csdn.net/dcrmg/article/details/53677739
1. 基于直方图均衡化的图像增强
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <iostream>
- using namespace cv;
- int main(int argc, char *argv[])
- {
- Mat image = imread("Test.jpg", 1);
- if (image.empty())
- {
- std::cout << "打开图片失败,请检查" << std::endl;
- return -1;
- }
- imshow("原图像", image);
- Mat imageRGB[3];
- split(image, imageRGB);
- for (int i = 0; i < 3; i++)
- {
- equalizeHist(imageRGB[i], imageRGB[i]);
- }
- merge(imageRGB, 3, image);
- imshow("直方图均衡化图像增强效果", image);
- waitKey();
- return 0;
- }
2. 基于拉普拉斯算子的图像增强
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <iostream>
- using namespace cv;
- int main(int argc, char *argv[])
- {
- Mat image = imread("Test.jpg", 1);
- if (image.empty())
- {
- std::cout << "打开图片失败,请检查" << std::endl;
- return -1;
- }
- imshow("原图像", image);
- Mat imageEnhance;
- Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, 0, 5, 0, 0, -1, 0);
- filter2D(image, imageEnhance, CV_8UC3, kernel);
- imshow("拉普拉斯算子图像增强效果", imageEnhance);
- waitKey();
- return 0;
- }
3. 基于对数Log变换的图像增强
对数变换可以将图像的低灰度值部分扩展,显示出低灰度部分更多的细节,将其高灰度值部分压缩,减少高灰度值部分的细节,从而达到强调图像低灰度部分的目的。变换方法:
对数变换对图像低灰度部分细节增强的功能过可以从对数图上直观理解:
x轴的0.4大约对应了y轴的0.8,即原图上0~0.4的低灰度部分经过对数运算后扩展到0~0.8的部分,而整个0.4~1的高灰度部分被投影到只有0.8~1的区间,这样就达到了扩展和增强低灰度部分,压缩高灰度部分的值的功能。
从上图还可以看到,对于不同的底数,底数越大,对低灰度部分的扩展就越强,对高灰度部分的压缩也就越强。
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- using namespace cv;
- int main(int argc, char *argv[])
- {
- Mat image = imread("Test.jpg");
- Mat imageLog(image.size(), CV_32FC3);
- for (int i = 0; i < image.rows; i++)
- {
- for (int j = 0; j < image.cols; j++)
- {
- imageLog.at<Vec3f>(i, j)[0] = log(1 + image.at<Vec3b>(i, j)[0]);
- imageLog.at<Vec3f>(i, j)[1] = log(1 + image.at<Vec3b>(i, j)[1]);
- imageLog.at<Vec3f>(i, j)[2] = log(1 + image.at<Vec3b>(i, j)[2]);
- }
- }
- //归一化到0~255
- normalize(imageLog, imageLog, 0, 255, CV_MINMAX);
- //转换成8bit图像显示
- convertScaleAbs(imageLog, imageLog);
- imshow("Soure", image);
- imshow("after", imageLog);
- waitKey();
- return 0;
- }
4. 基于伽马变换的图像增强
伽马变换主要用于图像的校正,将灰度过高或者灰度过低的图片进行修正,增强对比度。变换公式就是对原图像上每一个像素值做乘积运算:
伽马变换对图像的修正作用其实就是通过增强低灰度或高灰度的细节实现的,从伽马曲线可以直观理解:
γ值以1为分界,值越小,对图像低灰度部分的扩展作用就越强,值越大,对图像高灰度部分的扩展作用就越强,通过不同的γ值,就可以达到增强低灰度或高灰度部分细节的作用。
伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于于相机过曝)情况下的图像增强效果明显。
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- using namespace cv;
- int main(int argc, char *argv[])
- {
- Mat image = imread("Test.jpg");
- Mat imageGamma(image.size(), CV_32FC3);
- for (int i = 0; i < image.rows; i++)
- {
- for (int j = 0; j < image.cols; j++)
- {
- imageGamma.at<Vec3f>(i, j)[0] = (image.at<Vec3b>(i, j)[0])*(image.at<Vec3b>(i, j)[0])*(image.at<Vec3b>(i, j)[0]);
- imageGamma.at<Vec3f>(i, j)[1] = (image.at<Vec3b>(i, j)[1])*(image.at<Vec3b>(i, j)[1])*(image.at<Vec3b>(i, j)[1]);
- imageGamma.at<Vec3f>(i, j)[2] = (image.at<Vec3b>(i, j)[2])*(image.at<Vec3b>(i, j)[2])*(image.at<Vec3b>(i, j)[2]);
- }
- }
- //归一化到0~255
- normalize(imageGamma, imageGamma, 0, 255, CV_MINMAX);
- //转换成8bit图像显示
- convertScaleAbs(imageGamma, imageGamma);
- imshow("原图", image);
- imshow("伽马变换图像增强效果", imageGamma);
- waitKey();
- return 0;
- }
伽马变换增强前原图像:
- 本文已收录于以下专栏:
- OpenCV从入门到转行
OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)的更多相关文章
- 图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)
一.图像增强算法原理 图像增强算法常见于对图像的亮度.对比度.饱和度.色调等进行调节,增加其清晰度,减少噪点等.图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则 ...
- 【OpenCV】图像增强---灰度变换、直方图均衡化
图像增强的目的:改善图像的视觉效果或使图像更适合于人或机器的分析处理.通过图像增强,可以减少图像噪声,提高目标与背景的对比度,也可以增强或抑制图像中的某些细节. ------------------ ...
- OpenCV计算机视觉学习(9)——图像直方图 & 直方图均衡化
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 1, ...
- 【图像处理】基于OpenCV底层实现的直方图匹配
image processing 系列: [图像处理]图片旋转 [图像处理]高斯滤波.中值滤波.均值滤波 直方图匹配算法.又称直方图规定化.简单说.就是依据某函数.或者另外一张图片的引导,使得原图改变 ...
- OpenCV-跟我一起学数字图像处理之直方图均衡化
从这篇博文开始,小生正式从一个毫不相干专业转投数字图像处理.废话不多说了,talk is cheap. show me the code. 直方图均衡化目的 由于一些图像灰度的分布过于集中,这样会导致 ...
- Win8Metro(C#)数字图像处理--2.30直方图均衡化
原文:Win8Metro(C#)数字图像处理--2.30直方图均衡化 [函数名称] 直方图均衡化函数HistogramEqualProcess(WriteableBitmap src) [算法说明] ...
- openCV中直方图均衡化算法的理解
直方图均衡化就是调整灰度直方图的分布,即将原图中的灰度值映射为一个新的值.映射的结果直观表现是灰度图的分布变得均匀,从0到255都有分布,不像原图那样集中.图像上的表现就是对比度变大,亮的更亮,暗的更 ...
- OpenCV——直方图均衡化(用于图像增强)
#include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespac ...
- 灰度图像--图像增强 直方图均衡化(Histogram equalization)
灰度图像--图像增强 直方图均衡化(Histogram equalization) 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些 ...
随机推荐
- beginUpdates和endUpdates-实现UITableView的动画块
我们在做UITableView的修改,删除,选择时,需要对UITableView进行一系列的动作操作. 这样,我们就会用到 [tableView beginUpdates]; if (newCount ...
- [020]Sencha Ext JS 6.0使用教程2
本节主要以典型例子介绍如何用Sencha Ext JS6.0进行项目开发 入门阶段总是比较难的,掌握了基本操作步骤,使用方法,架构思维,开发起来还是满顺利,开心的,自己又能掌握一门新技术,又能进步,主 ...
- OracleServiceORCL这个服务竟然不见了
OracleServiceORCL这个服务竟然不见了,后数据库连接不成功,晕死,以前使用数据库还能看到,现在竟然不见了?Why?我猜测原因有二: ①:电脑已经装了Oracle数据库后又装了MySql数 ...
- poj_1988 并查集
题目大意 开始有N堆砖块,编号为1,2....N,每堆都只有一个.之后可以进行两种操作: (1)M X Y 将编号为X的砖块所在的那堆砖拿起来放到编号为Y的砖块所在的堆上: (2)C X 查询编号为X ...
- 【Redis】 make编译是提示 make cc Command not found
在linux系统上对redis源码进行编译时提示提示“make cc Command not found,make: *** [adlist.o] Error 127”. 这是由于系统没有安装gcc环 ...
- 【Java nio】java nio笔记
缓冲区操作:缓冲区,以及缓冲区如何工作,是所有I/O的基础.所谓“输入/输出”讲的无非就是把数据移出货移进缓冲区.进程执行I/O操作,归纳起来也就是向操作系统发出请求,让它要么把缓冲区里的数据排干,要 ...
- Git学习笔记(SourceTree克隆、提交、推送、拉取等)
学习一下sourcetree使用git 目录 一 克隆Clone 二 提交Commit和推送Push 三 拉取pull和获取fetch 四 版本回退reset 五 检出checkout 六 标签Tag ...
- BFS+优先队列+状态压缩DP+TSP
http://acm.hdu.edu.cn/showproblem.php?pid=4568 Hunter Time Limit: 2000/1000 MS (Java/Others) Memo ...
- 170608、Spring 事物机制总结
spring两种事物处理机制,一是声明式事物,二是编程式事物 声明式事物 1)Spring的声明式事务管理在底层是建立在AOP的基础之上的.其本质是对方法前后进行拦截,然后在目标方法开始之前创建或者加 ...
- poj1584 A round peg in a ground hole【计算几何】
含[判断凸包],[判断点在多边形内],[判断圆在多边形内]模板 凸包:即凸多边形 用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点. The ...