1. Mapper类

首先 Mapper类有四个方法:

(1) protected void setup(Context context)

(2) Protected void map(KEYIN key,VALUEIN value,Context context)

(3) protected void cleanup(Context context)

(4) public void run(Context context)

setup()方法一般用来加载一些初始化的工作,像全局文件\建立数据库的链接等等;cleanup()方法是收尾工作,如关闭文件或者执行map()后的键值分发等;map()函数就不多说了.

默认的Mapper的run()方法的核心代码如下:

public void run(Context context) throws IOException,InterruptedException
{
setup(context);
while(context.nextKeyValue())
map(context.getCurrentKey(),context,context.getCurrentValue(),context);
cleanup(context);
}

从代码中也可以看出先执行setup函数,然后是map处理代码,最后是cleanup的收尾工作.值得注意的是,setup函数和cleanup函数由系统作为回调函数只做一次,并不像map函数那样执行多次.

2.setup函数应用

   经典的wordcount在setup函数中加入黑名单就可以实现对黑名单中单词的过滤,详细代码如下:

public class WordCount {
static private String blacklistFileName= "blacklist.dat"; public static class WordCountMap extends
Mapper<LongWritable, Text, Text, IntWritable> { private final IntWritable one = new IntWritable(1);
private Text word = new Text();
private Set<String> blacklist; protected void setup(Context context) throws IOException,InterruptedException {
blacklist=new TreeSet<String>(); try{
FileReader fileReader=new FileReader(blacklistFileName);
BufferedReader bufferedReader=bew BufferedReader(fileReader);
String str;
while((str=bufferedReader.readLine())!=null){
blacklist.add(str);
}
} catch(IOException e){
e.printStackTrace();
}
} public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer token = new StringTokenizer(line);
while (token.hasMoreTokens()) {
word.set(token.nextToken());
if(blacklist.contains(word.toString())){
continue;
}
context.write(word, one);
}
}
} public static class WordCountReduce extends
Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJarByClass(WordCount.class);
job.setJobName("wordcount"); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(WordCountMap.class);
job.setCombinerClass(WordCountReduce.class);
job.setReducerClass(WordCountReduce.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

3.cleanup应用

求最值最简单的办法就是对该文件进行一次遍历得出最值,但是现实中数据比量比较大,这种方法不能实现。在传统的MapReduce思想中,将文件的数据经 过map迭代出来送到reduce中,在Reduce中求出最大值。但这个方法显然不够优化,我们可采用“分而治之”的思想,不需要map的所有数据全部 送到reduce中,我们可以在map中先求出最大值,将该map任务的最大值送reduce中,这样就减少了数据的传输量。那么什么时候该把这个数据写 出去呢?我们知道,每一个键值对都会调用一次map(),由于数据量大调用map()的次数也就多了,显然在map()函数中将该数据写出去是不明智的, 所以最好的办法该Mapper任务结束后将该数据写出去。我们又知道,当Mapper/Reducer任务结束后会调用cleanup函数,所以我们可以 在该函数中将该数据写出去。了解了这些我们可以看一下程序的代码:

public class TopKApp {
static final String INPUT_PATH = "hdfs://hadoop:9000/input2";
static final String OUT_PATH = "hdfs://hadoop:9000/out2"; public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf);
final Path outPath = new Path(OUT_PATH);
if(fileSystem.exists(outPath)){
fileSystem.delete(outPath, true);
} final Job job = new Job(conf , WordCountApp.class.getSimpleName());
FileInputFormat.setInputPaths(job, INPUT_PATH);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(NullWritable.class);
FileOutputFormat.setOutputPath(job, outPath);
job.waitForCompletion(true);
}
static class MyMapper extends Mapper<LongWritable, Text, LongWritable, NullWritable>{
long max = Long.MIN_VALUE;
protected void map(LongWritable k1, Text v1, Context context) throws java.io.IOException ,InterruptedException {
final long temp = Long.parseLong(v1.toString());
if(temp>max){
max = temp;
}
} protected void cleanup(org.apache.hadoop.mapreduce.Mapper<LongWritable,Text,LongWritable, NullWritable>.Context context) throws java.io.IOException ,InterruptedException {
context.write(new LongWritable(max), NullWritable.get());
}
} static class MyReducer extends Reducer<LongWritable, NullWritable, LongWritable, NullWritable>{
long max = Long.MIN_VALUE;
protected void reduce(LongWritable k2, java.lang.Iterable<NullWritable> arg1, org.apache.hadoop.mapreduce.Reducer<LongWritable,NullWritable,LongWritable,NullWritable>.Context arg2)
throws java.io.IOException ,InterruptedException {
final long temp = k2.get();
if(temp>max){
max = temp;
}
} protected void cleanup(org.apache.hadoop.mapreduce.Reducer<LongWritable,NullWritable,LongWritable,NullWritable>.Context context) throws java.io.IOException ,InterruptedException {
context.write(new LongWritable(max), NullWritable.get());
}
}
}

hadoop之mapper类妙用的更多相关文章

  1. [Hadoop源码解读](二)MapReduce篇之Mapper类

    前面在讲InputFormat的时候,讲到了Mapper类是如何利用RecordReader来读取InputSplit中的K-V对的. 这一篇里,开始对Mapper.class的子类进行解读. 先回忆 ...

  2. MapReduce之Mapper类,Reducer类中的函数(转载)

    Mapper类4个函数的解析 Mapper有setup(),map(),cleanup()和run()四个方法.其中setup()一般是用来进行一些map()前的准备工作,map()则一般承担主要的处 ...

  3. Mapper类/Reducer类中的setup方法和cleanup方法以及run方法的介绍

    在hadoop的源码中,基类Mapper类和Reducer类中都是只包含四个方法:setup方法,cleanup方法,run方法,map方法.如下所示: 其方法的调用方式是在run方法中,如下所示: ...

  4. Hadoop 2:Mapper和Reduce

    Hadoop 2:Mapper和Reduce Understanding and Practicing Hadoop Mapper and Reduce 1 Mapper过程 Hadoop将输入数据划 ...

  5. Job流程:Mapper类分析

    此文紧接Job流程:决定map个数的因素,Map任务被提交到Yarn后,被ApplicationMaster启动,任务的形式是YarnChild进程,在其中会执行MapTask的run()方法.无论是 ...

  6. 【mybatis】idea中 mybatis的mapper类去找对应的mapper.xml中的方法,使用插件mybatis-plugin

    idea中 mybatis的mapper类去找对应的mapper.xml中的方法,使用插件mybatis-plugin,名字可能叫Free mybatis-plugin 安装上之后,可能需要重启ide ...

  7. 【spring boot】mybatis启动报错:Consider defining a bean of type 'com.newhope.interview.dao.UserMapper' in your configuration. 【Mapper类不能被找到】@Mapper 和@MapperScan注解的区别

    启动报错: 2018-05-16 17:22:58.161 ERROR 4080 --- Disconnected from the target VM, address: '127.0.0.1:50 ...

  8. Hadoop之TaskInputOutputContext类

    在MapReduce过程中,每一个Job都会被分成若干个task,然后再进行处理.那么Hadoop是怎么将Job分成若干个task,并对其进行跟踪处理的呢?今天我们来看一个*Context类——Tas ...

  9. Hadoop_MapReduce中Mapper类和Reduce类

    在权威指南中,有个关于处理温度的MapReduce类,具体如下: 第一部分:Map public class MaxTemperatureMapper extends MapReduceBase im ...

随机推荐

  1. mysql常见字符串处理函数

  2. 【Dubbo源码阅读系列】之远程服务调用(上)

    今天打算来讲一讲 Dubbo 服务远程调用.笔者在开始看 Dubbo 远程服务相关源码的时候,看的有点迷糊.后来慢慢明白 Dubbo 远程服务的调用的本质就是动态代理模式的一种实现.本地消费者无须知道 ...

  3. 我告诉你 ,一个 window免费系统下载的网站!

    一个 window免费系统下载的网站! https://msdn.itellyou.cn/

  4. MessageBox.Show用法

    private void button3_Click(object sender, EventArgs e) { MessageBox.Show("  1  个参数 "); } ~ ...

  5. plsql developer 64位 注册码

    注册码product code(产品编码): 4vkjwhfeh3ufnqnmpr9brvcuyujrx3n3le serial Number(序列号):226959 password(口令): xs ...

  6. oracle自动冷备份脚本

    根据自己网上的资料和自己的需求,写的oracle冷备份脚本. 整体思路: 1.停止服务 2.文件拷贝 3.启动服务 保存以为文件为BAT格式,点击可以用下. rem ----------------- ...

  7. Web | jQuery快速上手

    jQuery伴随前端走过一段辉煌的时光,虽然现在已经慢慢的走下顶峰,但是过去的很多项目都是用jQuery写的,它的一些封装思想也非常值得借鉴,懂得jQuery是前端必不可少的. jQuery顶级对象 ...

  8. Kafka 部署指南-好久没有更新博客了

    最近到了一家新公司,很多全新技术栈要理解.每天都在看各类 English Offcial Document,我的宗旨是我既然看懂了,就写下来分享,这是第一篇. 基本需求: 1.已有 zookeeper ...

  9. 推荐一个网址:在线检查Yam文件语法格式的错误

    最近在学习Docker和K8S内容时候,经常会遇到要自己写一些容器部署或者组件部署的yaml文件. 但是苦于没有彻底熟悉yaml,有时候要到kubectl creat -f path 部署命令执行后, ...

  10. 我们比较常见的PHP实现openSug.js参数调试

    这是一款利PHP对百度搜索下拉框提示免费代码实现参数配置调试的程序源代码. 由想要对网站进行搜索下拉调试的站长朋友们进行方便.快速的效果演示,具体参考下面的PHP代码. 如何使用? 请新建一份PHP文 ...