RDD转换成为DataFrame
方式一: 通过case class创建DataFrames(反射)
TestDataFrame1.scala
package com.bky
// 隐式类的导入
// 定义case class,相当于表结构
case class Dept(var id:Int, var position:String, var location:String)
// 需要导入SparkSession这个包
import org.apache.spark.sql.SparkSession
/**
* 方式一: 通过case class创建DataFrames(反射)
*/
object TestDataFrame1 {
def main(args: Array[String]): Unit = {
/**
* 直接使用SparkSession进行文件的创建。
* 封装了SparkContext,SparkConf,SQLContext,
* 为了向后兼容,SQLContext和HiveContext也被保存了下来
*/
val spark = SparkSession
.builder() //构建sql
.appName("TestDataFrame1") // 设置文件名
.master("local[2]") // 设置executor
.getOrCreate() //获取或创建
import spark.implicits._ // 隐式转换
// 将本地的数据读入RDD,将RDD与case class关联
val deptRDD = spark.read.textFile("/Users/hadoop/data/dept.txt")
.map(line => Dept(line.split("\t")(0).toInt,
line.split("\t")(1),
line.split("\t")(2).trim))
// 将RDD转换成DataFrames(反射)
val df = deptRDD.toDF()
// 将DataFrames创建成一个临时的视图
df.createOrReplaceTempView("dept")
// 使用SQL语句进行查询
spark.sql("select * from dept").show()
}
}
精简版
TestDataFrame1.scala
package com.bky
import org.apache.spark.sql.SparkSession
object TestDataFrame1 extends App {
val spark = SparkSession
.builder() //构建sql
.appName("TestDataFrame1")
.master("local[2]")
.getOrCreate()
import spark.implicits._
val deptRDD = spark.read.textFile("/Users/hadoop/data/dept.txt")
.map(line => Dept(line.split("\t")(0).toInt,
line.split("\t")(1),
line.split("\t")(2).trim))
val df = deptRDD.toDF()
df.createOrReplaceTempView("dept")
spark.sql("select * from dept").show()
}
case class Dept(var id:Int, var position:String, var location:String)
方式二:通过创建structType创建DataFrames(编程接口)
TestDataFrame2.scala
package com.bky
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SparkSession}
/**
*
* 方式二:通过创建structType创建DataFrames(编程接口)
*/
object TestDataFrame2 extends App {
val spark = SparkSession
.builder()
.appName("TestDataFrame2")
.master("local[2]")
.getOrCreate()
/**
* 将RDD数据映射成Row,需要导入import org.apache.spark.sql.Row
*/
import spark.implicits._
val path = "/Users/hadoop/data/dept.txt"
val fileRDD = spark.read.textFile(path)
val rowRDD= fileRDD.map(line => {
val fields = line.split("\t")
Row(fields(0).toInt, fields(1), fields(2).trim)
})
// 创建StructType来定义结构
val innerStruct = StructType(
// 字段名,字段类型,是否可以为空
StructField("id", IntegerType, true) ::
StructField("position", StringType, true) ::
StructField("location", StringType, true) :: Nil
)
val df = spark.createDataFrame(innerStruct)
df.createOrReplaceTempView("dept")
spark.sql("select * from dept").show()
}
方式三:通过json文件创建DataFrames
TestDataFrame3.scala
package com.bky
import org.apache.spark.sql.SparkSession
/**
* 方式三:通过json文件创建DataFrames
*/
object TestDataFrame3 extends App {
val spark = SparkSession
.builder()
.master("local[2]")
.appName("TestDataFrame3")
.getOrCreate()
val path = "/Users/hadoop/data/test.json"
val fileRDD = spark.read.json(path)
fileRDD.createOrReplaceTempView("test")
spark.sql("select * from test").show()
}
RDD转换成为DataFrame的更多相关文章
- Spark之 RDD转换成DataFrame的Scala实现
依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2. ...
- Spark SQL中 RDD 转换到 DataFrame (方法二)
强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1. ...
- Spark SQL中 RDD 转换到 DataFrame
1.people.txtsoyo8, 35小周, 30小华, 19soyo,882./** * Created by soyo on 17-10-10. * 利用反射机制推断RDD模式 */impor ...
- Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)
一:准备数据源 在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...
- RDD转换成DataFrames
官方提供了2种方法 1.利用反射来推断包含特定类型对象的RDD的schema.这种方法会简化代码并且在你已经知道schema的时候非常适用. 先创建一个bean类 case class Person( ...
- RDD转换DataFrame
Spark SQL有两种方法将RDD转为DataFrame. 1. 使用反射机制,推导包含指定类型对象RDD的schema.这种基于反射机制的方法使代码更简洁,而且如果你事先知道数据schema,推荐 ...
- sparksql 动态设置schema将rdd转换成dataset/dataframe
java public class DynamicDemo { private static SparkConf conf = new SparkConf().setAppName("dyn ...
- 如何使用隐式转换扩展DataFrame和RDD以及其他的对象
目的 DataFrame可以点出来很多方法,都是DF内置的. 比如说:df.withColumn(),df.printSchema(). 但是如果你想打印df中的分区位置信息,以及每个key有多少记录 ...
- spark的RDD如何转换为DataFrame
1.Dataset与RDD之间的交互 Spark仅支持两种方式来将RDD转成Dataset.第一种方式是使用反射来推断一个RDD所包含的对象的特定类型.这种基于反射的方式会让代码更加地简洁,当你在编写 ...
随机推荐
- 22-python爬虫解决gbk乱码问题
转载自: python爬虫解决gbk乱码问题 今天尝试了下爬虫,爬取一本小说,忘语的凡人修仙仙界篇,当然这样不好,大家要支持正版. 爬取过程中是老套路,先获取网页源代码 # -*- coding: ...
- Python爬虫进阶一之爬虫框架概述
综述 爬虫入门之后,我们有两条路可以走. 一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为自己的爬虫增加分布式,多线程等功能扩展.另一条路便是学习一些优 ...
- 状态模式c#(状态流转例子吃饭)
using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace 状态模式{ ...
- 解析config文件 练手代码
解析一个如下的CONFIG文件 #config.txt #SHTTPD Web 服务器配置文件示例 #侦听端口 ListenPort = 80 #最大并发访问客户端数目 MaxClient = 8 # ...
- C#使用互斥量(Mutex)实现多进程并发操作时多进程间线程同步操作(进程同步)的简单示例代码及使用方法
本文主要是实现操作系统级别的多进程间线程同步(进程同步)的示例代码及测试结果.代码经过测试,可供参考,也可直接使用. 承接上一篇博客的业务场景[C#使用读写锁三行代码简单解决多线程并发写入文件时线程同 ...
- serialVersionUID的作用以及IDEA、Eclipse如何自动生成serialVersionUID
说到serialVersionUID,首先要讲讲序列化. 序列化: 序列化可以将一个java对象以二进制流的方式在网络中传输并且可以被持久化到数据库.文件系统中,反序列化则是可以把之前持久化在数据库或 ...
- 安装Greenplum-perfmon-web监控软件遇到的问题及解决
环境 Product Version Pivotal Greenplum (GPDB) 4.3.x Pivotal Greenplum Command Center (GPCC) Others ...
- 如何将图片嵌入到Html中
将图片内嵌入到Html中,最好的方法就是用Base64 string.例如:<img src=" ...
- 正则表达式REGEXP
正则表达式:REGular EXPression, REGEXP 元字符: .: 匹配任意单个字符 []: 匹配指定范围内的任意单个字符 [^]:匹配指定范围外的任意单个字符 字符集合:[:digit ...
- ashx、aspx、ASP.NET MVC
ashx:ProcessRequest(IHandler的方法)aspx:Page_Load(Page继承IHttpHandler)(RouteHandler)(HttpHandler)(MvcHan ...