(转)Haar-like矩形遍历检测窗口演示Matlab源代码
from:http://blog.sina.com.cn/s/blog_736aa0540101kzqb.html
clc; clear; close all;
% Haar-like特征矩形计算
board = 24 % 检测窗口宽度
num = 24 % 检测窗口分划数
show = 1; % 1为作图
time = 0.001; % 作图间隔
%%
if mod(board,num)~=0
error('检测窗口宽度必须是分划数的整数倍')
else
delta = board/num % 滑动步进值
end
%% Haar特征1:左白,右黑,(s,t)=(1,2)
s = 1;
t = 2;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征1:左白,右黑,(s,t)=(1,2) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r]; % 矩形坐标初始化
Py0 = [0 c/2 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(Px,repmat(Py',1,2),'r','LineWidth',5)
plot(repmat(Px,2,1),repmat([Py(1) Py(end)]',1,2),'r','LineWidth',5); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征2:上白,下黑,(s,t)=(2,1)
s = 2;
t = 1;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征2:上白,下黑,(s,t)=(2,1) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r/2 r]; % 矩形坐标初始化
Py0 = [0 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(repmat(Px,2,1),repmat(Py',1,length(Px)),'r','LineWidth',3);
plot(repmat([Px(1) Px(end)]',1,2),repmat(Py,2,1),'r','LineWidth',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征3:左右白,中间黑,(s,t)=(1,3)
s = 1;
t = 3;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征3:左右白,中间黑,(s,t)=(1,3) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r]; % 矩形坐标初始化
Py0 = [0 c/3 c*2/3 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(Px,repmat(Py',1,2),'r','LineWidth',5)
plot(repmat(Px,2,1),repmat([Py(1) Py(end)]',1,2),'r','LineWidth',5); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征4:左右白,中间黑(2倍宽度),(s,t)=(1,4)
s = 1;
t = 4;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征4:左右白,中间黑(2倍宽度),(s,t)=(1,4) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r]; % 矩形坐标初始化
Py0 = [0 c/4 c*3/4 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(Px,repmat(Py',1,2),'r','LineWidth',5)
plot(repmat(Px,2,1),repmat([Py(1) Py(end)]',1,2),'r','LineWidth',5); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征5:上下白,中间黑,(s,t)=(3,1)
s = 3;
t = 1;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征5:上下白,中间黑,(s,t)=(3,1) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r/3 r*2/3 r]; % 矩形坐标初始化
Py0 = [0 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(repmat(Px,2,1),repmat(Py',1,length(Px)),'r','LineWidth',3);
plot(repmat([Px(1) Px(end)]',1,2),repmat(Py,2,1),'r','LineWidth',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征6:上下白,中间黑(2倍宽度),(s,t)=(4,1)
s = 4;
t = 1;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征6:上下白,中间黑(2倍宽度),(s,t)=(4,1) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口宽
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 列方向移动个数
Px0 = [0 r/4 r*3/4 r]; % 矩形坐标初始化
Py0 = [0 c];
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(repmat(Px,2,1),repmat(Py',1,length(Px)),'r','LineWidth',3);
plot(repmat([Px(1) Px(end)]',1,2),repmat(Py,2,1),'r','LineWidth',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征7:左上右下白,其它黑,(s,s)=(2,2)
s = 2;
t = 2;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征7:左上右下白,其它黑,(s,s)=(2,2) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口高
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 行方向移动个数
Px0 = [0 r/2 r]; % 矩形坐标初始化
Py0 = [0 c/2 c]; % 矩形坐标初始化
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(repmat(Px,3,1),repmat(Py',1,length(Px)),'r','LineWidth',3);
plot(repmat([Px(1) Px(end)]',1,3),repmat(Py,2,1),'r','LineWidth',3); hold off
pause(time)
end
end
end
end
end
NUM
%% Haar特征8:四周白,中间黑,(s,s)=(3,3)
s = 3;
t = 3;
R = s:s:floor(num/s)*s; % Haar窗口高
C = t:t:floor(num/t)*t; % Haar窗口宽
NUM = 0; % Haar特征总数
'---- Haar特征8:四周白,中间黑,(s,s)=(3,3) ---'
for I = 1:length(R)
for J = 1:length(C)
r = R(I)*delta; % Haar窗口高
c = C(J)*delta; % Haar窗口高
nr = num-R(I)+1; % 行方向移动个数
nc = num-C(J)+1; % 行方向移动个数
Px0 = [0 r/3 r*2/3 r]; % 矩形坐标初始化
Py0 = [0 c/3 c*2/3 c]; % 矩形坐标初始化
for i = 1:nr
for j = 1:nc
Px = Px0+(i-1)*delta; % 滑动取点
Py = Py0+(j-1)*delta;
NUM = NUM+1;
if show
plot([0 board],repmat((0:delta:board)',1,2),'k'); hold on;
plot(repmat((0:delta:board)',1,2),[0 board],'k'); axis tight; axis square;
title('Haar矩形遍历演示');xlabel('x');ylabel('y');
plot(repmat(Px,4,1),repmat(Py',1,length(Px)),'r','LineWidth',3);
plot(repmat([Px(1) Px(end)]',1,4),repmat(Py,2,1),'r','LineWidth',3); hold off
pause(time)
end
end
end
end
end
NUM
% 毕业院校:海军工程大学,水声工程专业,博士
% 精通方向:数字信号(图像、视频)处理,人工智能与模式识别,群体智能优化,非线性与混沌,支持向量机,Matlab与VC++混编
% 现任岗位:沈阳聚德视频技术有限公司,图像处理及模式识别研发工程师
% 工作职责:车牌识别,视频目标跟踪等算法开发,C/C++实现,DSP植入
% 兴趣爱好:金融时序的程式化交易
%
% 主要成果:
% [1] 实现车牌识别C/C实现,DSP植入,识别率:汉字不低于99%,数字字母不低于99.5%,整牌不低于97%
% [2] 精通数字信号(图像、视频)“特征提取”与“模式识别”的研究与开发,开展了“支持向量机”应用研究,原创文章有《四种支持向量机工具箱使用要点》,独立开发了“支持向量机Matlab工具箱Version1.0”。结题项目有:语音信号处理与识别,遥感图像的特征提取与分类,人脸识别,主被动声纳信号处理与识别等
% [3] 精通“群体智能优化”,原创工具箱有“群体智能算法”Matlab工具箱 Version2.0”,误差精度优于现有公开发表文献,工程中解决了各种高维复杂问题的优化计算
% [4] 精通“时间序列混沌建模和预测”,基于Matlab和VC 混编平台,独立开发了混沌分析和预测软件包“混沌时间序列分析与预测工具箱 Version2.9”。结题项目有:金融数据波动性分析与程式化交易,银行反洗钱异常检测系统,混沌背景弱信号检测,海洋混响背景弱目标检测等
% [5] 精通Matlab与VC 混合编程:(a)以VC 为界面,核心算法采用Matlab函数,原创文章有《如何将Matlab7.0函数转换成VC 6.0动态链接库》;(b)以Matlab为界面,耗时算法在VC 环境中采用Mexfunction编译。
%
% 联系方式
电子邮件:luzhenbo2@qq.com
个人博客: http://blog.sina.com.cn/luzhenbo2
(转)Haar-like矩形遍历检测窗口演示Matlab源代码的更多相关文章
- paper 69:Haar-like矩形遍历检测窗口演示Matlab源代码[转载]
Haar-like矩形遍历检测窗口演示Matlab源代码 clc; clear; close all; % Haar-like特征矩形计算 board = 24 % 检测窗口宽度 num = 24 % ...
- 基于Haar特征Adaboost人脸检测级联分类
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...
- WPF Window异形窗口演示
我们先通过简单的效果展示,切换展示不同图片: 我们先定义图片资源文件,我们可以在window资源中定义,下面的在app.xaml文件来定义: <Application x:Class=" ...
- 链表创建和链表遍历算法的演示_C语言
今天搞了一个多小时,头是疼的,应该是没休息好吧,学习了数据结构这一节,感觉收益良多,下面贴上代码和心得: /*24_链表创建和链表遍历算法的演示*/ # include <stdio.h> ...
- OpenCV 矩形轮廓检测
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础介绍 OpenCV里提取目 ...
- Silverlight子窗口(ChildWindow)传递参数到父窗口演示
在企业级项目中,子窗口(ChildWindow)是一个常用控件,其展示方式是以弹出窗口来显示信息. 这里我将演示,子窗口传递参数到父窗口的方法.由于我的开发环境都是英文环境,所以部分中文可能显示不正常 ...
- 遍历windows窗口
原文 1. GetDesktopWindow GetNextWindow HWND hAll = ::GetDesktopWindow(); HWND hCurrent = ::GetNextWind ...
- python3+openCV实现图片的人脸人眼检测,原理+参数+源代码
上学时候用matlab学过一些图像处理的基础知识,当时课程作业是用haar实现人脸检测 but当时是心思根本不在图像处理上,so找了个同学帮忙做的,自己没上心 然鹅天道好轮回,现在捡起来了原来的算法一 ...
- OpenCV角点检测goodFeaturesToTrack()源代码分析
上面一篇博客分析了HARRIS和ShiTomasi角点检测的源代码.而为了提取更准确的角点,OpenCV中提供了goodFeaturesToTrack()这个API函数,来获取更加准确的角点位置.这篇 ...
随机推荐
- 解决 ASP.NET Chart 控件出错 为 ChartImg.axd 执行子请求时出错
今天在做一个关于MVC的MSChart时,本以为很简单的一个东西,后面把数据什么的都绑定好后,满以为OK了,一运行就报错“ ASP.NET Chart 控件出错 为 ChartImg.axd ...
- EMC (电磁兼容性)
电磁兼容性EMC(Electro Magnetic Compatibility),是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力.因此,EMC包括两个方面 ...
- EMIPLIB简介
EMIPLIB(http://research.edm.uhasselt.be/emiplib)的全称是'EDM Media over IP libray' .EDM是Hasselt Universi ...
- SA读书笔记1
SA的基本任务: 帐户: 为新用户增设帐号,将不再活动的帐号删除,帐号存活期事务(忘记密码等).把用户的主目录放在什么位置.在哪些机器上创建帐号. 硬件:识别并使用新硬件.对于虚拟化:设备可能要安装在 ...
- XXXAction-validation.xml文件中报错:Referenced file Contains errors
我们需要引用与验证器配置相关的dtd文件,这个文件可以在xwork-core-2.3.1.2.jar下找到(xwork-validator-1.0.3.dtd) 网上有很多处理办法,如下所示: 1.直 ...
- VisualGDB系列10:快速调试Linux应用程序
根据VisualGDB官网(https://visualgdb.com)的帮助文档大致翻译而成.主要是作为个人学习记录.有错误的地方,Robin欢迎大家指正. 本文介绍如何快速调试GCC构建的Linu ...
- app自动更新(android)
更新插件代码:https://github.com/shixy/UpdateApp 来源:http://aspoems.iteye.com/blog/1897300 检查更新的时候,通过指定的URL获 ...
- 我积累的Java实用代码
1.解压zip文件 /** * 解压输入的zip流,Java默认的解压只能处理UTF-8编码的文件或者目录名,否则会报MALFORMED异常 * * @param is 输入流 * @param ou ...
- actionbar中添加searchview并监听期伸缩/打开的方法
首先在xml中设置actionviewclass <item android:id="@+id/m1" android:title="setting" a ...
- JVM实用参数(三)打印所有XX参数及值
JVM实用参数(三)打印所有XX参数及值 原文地址:https://blog.codecentric.de/en/2012/07/useful-jvm-flags-part-3-printing-al ...