UVA——442 Matrix Chain Multiplication
442 Matrix Chain Multiplication
Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices.
Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary.
However, the number of elementary multiplications needed strongly depends on the evaluation order
you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two
different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed
for a given evaluation strategy.
Input
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (1 ≤ n ≤ 26), representing the number of
matrices in the first part. The next n lines each contain one capital letter, specifying the name of the
matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):
SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
Output
For each expression found in the second part of the input file, print one line containing the word ‘error’
if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one
line containing the number of elementary multiplications needed to evaluate the expression in the way
specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
Universidad de Valladolid OJ: 442 – Matrix Chain Multiplication 2/2
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))
Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125
栈模拟
我们先用一个结构体储存每个矩阵的长和宽。然后我们开始对读入的每一个字符串进行扫描,当我们遇到(的时候直接忽略,遇到)的时候讲栈顶的两个元素弹出进行计算,每次计算的时候我们需要判断这两个矩阵是否满足相乘的条件,矩阵相乘的条件为第一个矩阵的宽等于第二个矩阵的长,然后ans根据题目中要求的进行累加。当既不是(也不是)的时候我们将这个矩阵入栈。
#include<stack>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 30
using namespace std;
int read()
{
,f=; char ch=getchar();
;ch=getchar();}
+ch-',ch=getchar();
return x*f;
}
bool flag;
char ch;
string ss;
struct Node
{
int x,y;
Node(,):x(x),y(y){}
}node[N];
stack<Node>s;
int main()
{
int n=read(),a,ans;
;i<=n;i++)
{
scanf("%c",&ch);
a=ch-;
node[a].x=read(),node[a].y=read();
}
while(cin>>ss)
{
int l=ss.length();
flag=;
;i<l;i++)
{
if(ss[i]==')')
{
Node m2=s.top(); s.pop();
Node m1=s.top(); s.pop();
if(m1.y!=m2.x) {flag=true;break;}
else
{
ans+=m1.x*m1.y*m2.y;
s.push(Node(m1.x,m2.y));
}
}
else
if(ss[i]!='(')
{
a=ss[i]-;
s.push(Node(node[a].x,node[a].y));
}
}
if(flag) printf("error\n");
else printf("%d\n",ans);
}
;
}
UVA——442 Matrix Chain Multiplication的更多相关文章
- UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)
意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error 输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中 ...
- stack UVA 442 Matrix Chain Multiplication
题目传送门 题意:给出每个矩阵的行列,计算矩阵的表达式,如果错误输出error,否则输出答案 分析:表达式求值,stack 容器的应用:矩阵的表达式求值A 矩阵是a * b,B 矩阵是b * c,则A ...
- UVa 442 Matrix Chain Multiplication(栈的应用)
题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...
- UVA - 442 Matrix Chain Multiplication(栈模拟水题+专治自闭)
题目: 给出一串表示矩阵相乘的字符串,问这字符串中的矩阵相乘中所有元素相乘的次数. 思路: 遍历字符串遇到字母将其表示的矩阵压入栈中,遇到‘)’就将栈中的两个矩阵弹出来,然后计算这两个矩阵的元素相乘的 ...
- 例题6-3 Matrix Chain Multiplication ,Uva 442
这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...
- UVA 442 二十 Matrix Chain Multiplication
Matrix Chain Multiplication Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %l ...
- Matrix Chain Multiplication[HDU1082]
Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- Matrix Chain Multiplication(表达式求值用栈操作)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...
随机推荐
- CSS简易学习笔记
学习地址:http://www.w3school.com.cn/css/index.asp cnblog不能把格式复制上来,有格式文字版:https://github.com/songzhenhua/ ...
- 孤荷凌寒自学python第二十九天python的datetime.time模块
孤荷凌寒自学python第二十九天python的datetime.time模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) datetime.time模块是专门用来表示纯时间部分的类. ...
- leetcode 211. 添加与搜索单词 - 数据结构设计 解题报告
设计一个支持以下两种操作的数据结构: void addWord(word) bool search(word) search(word) 可以搜索文字或正则表达式字符串,字符串只包含字母 . 或 a- ...
- 【转】mysql 计划事件
转自:http://www.cnblogs.com/c840136/articles/2388512.html MySQL5.1.x版本中引入了一项新特性EVENT,顾名思义就是事件.定时任务机制,在 ...
- 软工实践Alpha冲刺(4/10)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 很胖,刚学,照猫画虎做了登录与注册界面. 展示GitHub ...
- android系统联系人分组特效实现(2)---字母表快速滚动
要实现这种功能,只需要在 android系统联系人分组特效实现(1)---分组导航和挤压动画 的基础上再加上一个自定义控件即可完成. 1.新建项目,继续新建一个java类,BladeView,用 ...
- vue cli & npm err & shit cnpm
vue cli & npm err & shit cnpm npm err & shit cnpm https://github.com/vuejs/vue-cli/issue ...
- Codeforces 498D Traffic Jams in the Land | 线段树
题目大意: 给坐标轴1~n的点,每个点有一个权值,从一个点走到下一个点需要1s,如果当前时间是权值的倍数就要多花1s 给出q组操作,C表示单点修改权值,A表示询问0时刻x出发到y的时间 题解:因为权值 ...
- 【CF Edu 28 C. Four Segments】
time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...
- 公共文件js加载
头部:例如 <header id="header" class="clearfix"> <a class="col-xs-9&quo ...