Simon has a prime number x and an array of non-negative integers a1, a2, ..., an.

Simon loves fractions very much. Today he wrote out number  on a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction: , where number t equals xa1 + a2 + ... + an. Now Simon wants to reduce the resulting fraction.

Help him, find the greatest common divisor of numbers s and t. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109 + 7).

The first line contains two positive integers n and x (1 ≤ n ≤ 105, 2 ≤ x ≤ 109) — the size of the array and the prime number.

The second line contains n space-separated integers a1, a2, ..., an (0 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ 109).

Print a single number — the answer to the problem modulo 1000000007 (109 + 7).

Examples

Input
2 2
2 2
Output
8
Input
3 3
1 2 3
Output
27
Input
2 2
29 29
Output
73741817
Input
4 5
0 0 0 0
Output
1

Note

In the first sample . Thus, the answer to the problem is 8.

In the second sample, . The answer to the problem is 27, as 351 = 13·27, 729 = 27·27.

In the third sample the answer to the problem is 1073741824 mod 1000000007 = 73741817.

In the fourth sample . Thus, the answer to the problem is 1.

思路是主要的进制的思想

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath>
#define mod 1000000007 const int maxn=1e5+;
typedef long long ll;
using namespace std;
ll quickpow(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)
ans=(ans*a)%mod;
b>>=;
a=(a*a)%mod;
}
return ans;
}
ll a[maxn];
int main()
{
ll n,x;
cin>>n>>x;
ll s=;
for(int t=;t<n;t++)
{
scanf("%lld",&a[t]);
s+=a[t];
}
for(int t=;t<n;t++)
{
a[t]=s-a[t];
}
ll ans,cnt=;
sort(a,a+n);
a[n]=-;
for(int t=;t<=n;t++)
{
if(a[t]!=a[t-])
{
if(cnt%x)
{
ans=a[t-];
break;
}
else
{
cnt/=x;
a[t-]++;
t--;
}
}
else
{
cnt++;
}
}
ll ss=min(s,ans);
cout<<quickpow(x,ss)<<endl;
return ;
}

CodeForces - 359C-Prime Number的更多相关文章

  1. CodeForce 359C Prime Number

    Prime Number CodeForces - 359C Simon has a prime number x and an array of non-negative integers a1,  ...

  2. Prime Number CodeForces - 359C (属于是数论)

    Simon has a prime number x and an array of non-negative integers a1, a2, ..., an. Simon loves fracti ...

  3. Codeforces H. Prime Gift(折半枚举二分)

    题目描述: Prime Gift time limit per test 3.5 seconds memory limit per test 256 megabytes input standard ...

  4. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  5. 每日一九度之 题目1040:Prime Number

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6732 解决:2738 题目描述: Output the k-th prime number. 输入: k≤10000 输出: The k- ...

  6. LintCode-Kth Prime Number.

    Design an algorithm to find the kth number such that the only prime factors are 3, 5, and 7. The eli ...

  7. Codeforces 55D Beautiful Number

    Codeforces 55D Beautiful Number a positive integer number is beautiful if and only if it is divisibl ...

  8. 10 001st prime number

    这真是一个耗CPU的运算,怪不得现在因式分解和素数查找现在都用于加密运算. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13 ...

  9. CodeForces 432C Prime Swaps

    Description You have an array a[1], a[2], ..., a[n], containing distinct integers from 1 to n. Your ...

  10. [LeetCode] Prime Number of Set Bits in Binary Representation 二进制表示中的非零位个数为质数

    Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...

随机推荐

  1. DevTools in Spring Boot 1.3

    Spring Boot 1.3 will ship with a brand new module called spring-boot-devtools. The aim of this modul ...

  2. appium如何连接模拟器代码实例

    from appium import webdriver def connect(self): self.desired_caps = {} self.desired_caps['platformNa ...

  3. maven中pom.xml元素含义

  4. 读书笔记<深入理解JVM>01 关于OutOfMemoryError 堆空间的溢出

    代码片段如下: package com.gosaint.shiro; import java.util.ArrayList; import java.util.List; public class H ...

  5. [hdu2255]奔小康赚大钱(二分图最优匹配、KM算法)

    题目大意:求二分图的最优匹配(首先数目最大, 其次权值最大). 解题关键:KM算法 复杂度:$O(n^3)$ #include<cstdio> #include<cstring> ...

  6. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)

    一.介绍 1.算法的时间和空间间复杂度 2.特点 Running time is insensitive to input. The process of finding the smallest i ...

  7. 数字图像处理实验(5):Proj03-01 ~ Proj03-06 标签: 图像处理matlab 2017-04-30 10:39 184人阅读

    PROJECT 03-01 : Image Enhancement Using Intensity Transformations 实验要求: Objective To manipulate a te ...

  8. R: 控制流: if & for & while

    ################################################### 问题:if 判断   18.4.29 if 的应用与??...... 解决方案: # if(){ ...

  9. WordCountPro小程序

    WordCountPro小程序 基本任务 1.githu地址 https://github.com/JarrySmith/WordCountPro 2.psp2.1表   PSP2.1 PSP阶段 预 ...

  10. 转换流 Properties集合 序列化 工具

    今日内容介绍1.转换流2.缓冲流3.Properties集合4.序列化流与反序列化流5.commons-IO============================================== ...