A - Layout

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance
of each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of MD
constraints (1 <= MD <= 10,000) tells which cows dislike each
other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must
be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated
positive integers: A, B, and D, with 1 <= A < B <= N. Cows A
and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows #2
and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
 
算法分析:
      不知道为什么用SPFA 会超时,改成bellman_ford 算法了就行了,并且需要注意 差分约束 建图时 两个点是否眼交换!
   二题目里却说是有大小顺序的,但是不交换顺序就错了!(我用位运算交换顺序,据说会节省时间,但是刘汝佳的树立却说不建议这样写,不知道为什    么?)
 
 
 
Accepted:
 
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define INF 9999999 int dis[1010];
int cnt;
int n, ml, md; struct N
{
int u;
int v;
int w;
}s[200005]; void add(int u, int v, int w )
{
s[cnt].u=u;
s[cnt].v=v;
s[cnt++].w=w;
} void bellman_ford()
{
int i, j;
for(i=1; i<=n; i++)
dis[i]=INF;
dis[1]=0; for(i=2; i<=n; i++ )
{
int flag=0;
for(j=0; j<cnt; j++ ) //检查每条边
{
if( dis[s[j].v] > dis[s[j].u] + s[j].w )
{
dis[s[j].v] = dis[s[j].u]+s[j].w ;
flag=1;
}
}
if(flag==0)
break;
}
for(i=0; i<cnt; i++)
{
if(dis[s[i].v] > dis[s[i].u]+s[i].w )
break;
}
if(i<cnt)
printf("-1\n");
else
{
if( dis[n]==INF )
printf("-2\n");
else
printf("%d\n", dis[n] );
}
} int main()
{
int i, j;
int u, v, w;
while(scanf("%d %d %d", &n, &ml, &md)!=EOF)
{
cnt=0;
for(i=0; i<ml; i++)
{
scanf("%d %d %d", &u, &v, &w ); //亲密的牛 最大距离
if(u>v)
{
u=u^v; v=v^u; u=u^v; //还可以这样写: u^=v^=u^=v ;
}
add(u, v, w);
}
for(j=0; j<md; j++)
{
scanf("%d %d %d", &u, &v, &w ); //排斥的牛 最小距离
if(u<v)
{
u=u^v; v=v^u; u=u^v; // u^=v^=u^=v ;
}
add(u, v, -w);
}
bellman_ford();
}
return 0;
}

POJ Layout的更多相关文章

  1. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  6. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  7. poj 3169 Layout

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8610   Accepted: 4147 Descriptio ...

  8. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

  9. POJ 3167 Layout(差分约束)

    题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

随机推荐

  1. Android使用Fragment打造万能页面切换框架

    首先我们来回顾一下传统用Activity进行的页面切换.activity之间切换.首先须要新建intent对象,给该对象设置一些必须的參数,然后调用startActivity方法进行页面跳转. 假设须 ...

  2. Spring事务管理之声明式事务管理-基于注解的方式

    © 版权声明:本文为博主原创文章,转载请注明出处 案例 - 利用Spring的声明式事务(TransactionProxyFactoryBean)管理模拟转账过程 数据库准备 -- 创建表 CREAT ...

  3. 自动清理DataGuard备机日志

    >> from zhuhaiqing.info #!/usr/bin/bash #删除DataGuard备机归档日志备份 export ORACLE_HOME=/opt/oracle/pr ...

  4. git删除所有历史提交记录,只留下最新的干净代码

    git删除所有历史提交记录,只留下最新的干净代码 1.Checkout git checkout --orphan latest_branch 2. Add all the files git add ...

  5. DirectShow使用心得

    用了3天时间,将DShow加入到了游戏中,记录下心得,方便要使用的童鞋以及以后的自己查看.1. Video Mixing Renderer 9,内部使用Direct3D 9,需要Windows XP或 ...

  6. FILE 创建

    public class CreateDelFileUtils implements Serializable{ /** * */ private static final long serialVe ...

  7. 如何玩转最新的项目的搭配springmvc+mybatis+Redis+Nginx+tomcat+mysql

    上一次完成nginx+tomcat组合搭配,今天我们就说说,这几个软件在项目中充当的角色: 要想完成这几个软件的组合,我们必须知道和熟悉应用这个框架, 一: Nginx:在项目中大多数作为反向代理服务 ...

  8. Ajax跨域请求,无法传递及接收cookie信息解决方案

    最近的项目中涉及到了应用ajax请求后台系统登录,身份认证失败,经过不断的调试终于找到解决方案. 应用场景: 项目测试环境:前端应用HTML,js,jQuery ajax请求,部署在Apache服务器 ...

  9. WPF编程学习——样式(好文)

    http://www.cnblogs.com/libaoheng/archive/2011/11/20/2255963.html

  10. IOS启动页动画(uiview 淡入淡出效果 )2

    Appdelegate里面右个这个函数,只要它没结束,你的等待界面就不会消失.以在启动的时候做些动画 - (BOOL)application:(UIApplication *)application ...