A - Layout

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance
of each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of MD
constraints (1 <= MD <= 10,000) tells which cows dislike each
other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must
be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated
positive integers: A, B, and D, with 1 <= A < B <= N. Cows A
and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows #2
and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
 
算法分析:
      不知道为什么用SPFA 会超时,改成bellman_ford 算法了就行了,并且需要注意 差分约束 建图时 两个点是否眼交换!
   二题目里却说是有大小顺序的,但是不交换顺序就错了!(我用位运算交换顺序,据说会节省时间,但是刘汝佳的树立却说不建议这样写,不知道为什    么?)
 
 
 
Accepted:
 
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define INF 9999999 int dis[1010];
int cnt;
int n, ml, md; struct N
{
int u;
int v;
int w;
}s[200005]; void add(int u, int v, int w )
{
s[cnt].u=u;
s[cnt].v=v;
s[cnt++].w=w;
} void bellman_ford()
{
int i, j;
for(i=1; i<=n; i++)
dis[i]=INF;
dis[1]=0; for(i=2; i<=n; i++ )
{
int flag=0;
for(j=0; j<cnt; j++ ) //检查每条边
{
if( dis[s[j].v] > dis[s[j].u] + s[j].w )
{
dis[s[j].v] = dis[s[j].u]+s[j].w ;
flag=1;
}
}
if(flag==0)
break;
}
for(i=0; i<cnt; i++)
{
if(dis[s[i].v] > dis[s[i].u]+s[i].w )
break;
}
if(i<cnt)
printf("-1\n");
else
{
if( dis[n]==INF )
printf("-2\n");
else
printf("%d\n", dis[n] );
}
} int main()
{
int i, j;
int u, v, w;
while(scanf("%d %d %d", &n, &ml, &md)!=EOF)
{
cnt=0;
for(i=0; i<ml; i++)
{
scanf("%d %d %d", &u, &v, &w ); //亲密的牛 最大距离
if(u>v)
{
u=u^v; v=v^u; u=u^v; //还可以这样写: u^=v^=u^=v ;
}
add(u, v, w);
}
for(j=0; j<md; j++)
{
scanf("%d %d %d", &u, &v, &w ); //排斥的牛 最小距离
if(u<v)
{
u=u^v; v=v^u; u=u^v; // u^=v^=u^=v ;
}
add(u, v, -w);
}
bellman_ford();
}
return 0;
}

POJ Layout的更多相关文章

  1. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  6. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  7. poj 3169 Layout

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8610   Accepted: 4147 Descriptio ...

  8. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

  9. POJ 3167 Layout(差分约束)

    题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

随机推荐

  1. sprint3 【每日scrum】 TD助手站立会议第十天

    站立会议 组员 昨天 今天 困难 签到 刘铸辉 (组长) 团队进入最终的功能测试阶段,准备发布Beta版 和团队发布Beta版,并开总结会议 总结会议 Y 刘静 团队集合软件测试 软件发布 没有 Y ...

  2. PHP设置会话(Session)超时过期时间实现登录时间限制

    最近某个PHP项目用到了限制登录时间的功能,比如用户登录系统60分钟后如果没有操作就自动退出,我搜索了网络收集了有以下方法可供参考. 第一种方法即设置php.ini配置文件,设置session.gc_ ...

  3. Android新浪微博client(一)——主框架搭建

    原文出自:方杰| http://fangjie.sinaapp.com/?p=62 转载请注明出处 该项目代码已经放到github:https://github.com/JayFang1993/Sin ...

  4. 篇章一:[AngularJS] 使用AngularAMD動態載入Controller

    前言 使用AngularJS來開發Single Page Application(SPA)的時候,可以選用AngularUI Router來提供頁面內容切換的功能.但是在UI Router的使用情景裡 ...

  5. TCP可靠传输详解

    TCP提供了可靠的传输服务,这是通过下列方式提供的: 分块发送:应用数据被分割成TCP认为最适合发送的数据块.由TCP传递给IP的信息单位称为报文段或段(segment) 定时确认重传:当TCP发出一 ...

  6. Hadoop学习笔记(二)——zookeeper使用和分析

    分布式架构是中心化的设计.就是一个主控机连接多个处理节点,因此保证主控机高可用性十分关键.分布式锁是解决该问题的较好方案,多主控机抢一把锁.Zookeeper就是一套分布式锁管理系统,用于高可靠的维护 ...

  7. 数字证书转换cer---pem

    下载openssl-1.0.1s 安装好openssl之后,进入openssl目录:   输入openssl命令,即进入命令模式:   先将要转换的cer证书也放到openssl目录下面,然后执行以下 ...

  8. Jmeter+Ant+Jenkins接口自动化测试框架搭建

    前言 软件开发的V模型大家都不陌生,其中测试阶段分为单元测试→功能测试→系统测试→验收测试.其中单元测试一般由开发同学们自己完成,大部分测试具体实施(这里不包括用例设计)是从单体功能测试开始着手的. ...

  9. vue路由vue-route

    首先先引入插件 <script src="Vue.js"></script> //vue.js在前面 <script src="vue-ro ...

  10. 算法调参 weight_ratio, weight_seqratio

    from openpyxl import Workbook import xlrd import time import Levenshtein as Le target_city_list = [' ...