A - Layout

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance
of each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of MD
constraints (1 <= MD <= 10,000) tells which cows dislike each
other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must
be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated
positive integers: A, B, and D, with 1 <= A < B <= N. Cows A
and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows #2
and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
 
算法分析:
      不知道为什么用SPFA 会超时,改成bellman_ford 算法了就行了,并且需要注意 差分约束 建图时 两个点是否眼交换!
   二题目里却说是有大小顺序的,但是不交换顺序就错了!(我用位运算交换顺序,据说会节省时间,但是刘汝佳的树立却说不建议这样写,不知道为什    么?)
 
 
 
Accepted:
 
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define INF 9999999 int dis[1010];
int cnt;
int n, ml, md; struct N
{
int u;
int v;
int w;
}s[200005]; void add(int u, int v, int w )
{
s[cnt].u=u;
s[cnt].v=v;
s[cnt++].w=w;
} void bellman_ford()
{
int i, j;
for(i=1; i<=n; i++)
dis[i]=INF;
dis[1]=0; for(i=2; i<=n; i++ )
{
int flag=0;
for(j=0; j<cnt; j++ ) //检查每条边
{
if( dis[s[j].v] > dis[s[j].u] + s[j].w )
{
dis[s[j].v] = dis[s[j].u]+s[j].w ;
flag=1;
}
}
if(flag==0)
break;
}
for(i=0; i<cnt; i++)
{
if(dis[s[i].v] > dis[s[i].u]+s[i].w )
break;
}
if(i<cnt)
printf("-1\n");
else
{
if( dis[n]==INF )
printf("-2\n");
else
printf("%d\n", dis[n] );
}
} int main()
{
int i, j;
int u, v, w;
while(scanf("%d %d %d", &n, &ml, &md)!=EOF)
{
cnt=0;
for(i=0; i<ml; i++)
{
scanf("%d %d %d", &u, &v, &w ); //亲密的牛 最大距离
if(u>v)
{
u=u^v; v=v^u; u=u^v; //还可以这样写: u^=v^=u^=v ;
}
add(u, v, w);
}
for(j=0; j<md; j++)
{
scanf("%d %d %d", &u, &v, &w ); //排斥的牛 最小距离
if(u<v)
{
u=u^v; v=v^u; u=u^v; // u^=v^=u^=v ;
}
add(u, v, -w);
}
bellman_ford();
}
return 0;
}

POJ Layout的更多相关文章

  1. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  6. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  7. poj 3169 Layout

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8610   Accepted: 4147 Descriptio ...

  8. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

  9. POJ 3167 Layout(差分约束)

    题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

随机推荐

  1. C程序设计Week12晚上练习

    本周仅仅进行一个程序,曾经的一个程序. 自己定义例如以下函数,输入n(n<46)个学生的姓名和成绩,顺序输出这n个学生的姓名和成绩,并输出最高成绩的姓名和成绩.预习struct结构体,思考怎样改 ...

  2. 配置YUM源更新源

    在虚拟机上更新yum,总是告诉我找不懂镜像服务器地址,配置失败,连 #yum install yum 它自己都无法更新. 于是决定先配置一下yum的更新源. 首先找到yum的主要配置文件, 一般在/e ...

  3. 细说Redirect重定向请求(情节分享)

         前些日子在开发公司项目接口的时候,由于需要与第三方平台对接,由于接口之前的层层封装,不断的需要转发,把人差点搞糊涂了.本来以为之前对Redirect的认识足够清楚,可是到实际开发之前我还是没 ...

  4. 还在用系统自带的?那你那就OUT了!

    相信如今的APP10个里面有九个是有Tabbar的,可是非常多人甚是非常多公司都在用系统自带的tabbar.当然这也不是不能够,并且项目中就那几行代码.效果又一样. 可是,别忘了另一个可是.然并卵.这 ...

  5. MySQL中in(常量列表)的执行计划

    我们在写sql的时候,经常用到in,in后面跟一堆常量列表,如id.有人说in的效率很高,而有人说很低:有人说in能使用索引,还有人说in不能使用索引... 到底是一个怎样的情况呢?我们分析以下几种情 ...

  6. quartus2 13.0+modelsim联合开发环境搭建(win10)

    quartus2用于硬件设计代码的综合,检查是否有语法错误:modelsim用于对硬件设计代码进行仿真,观察波形是否与需求一致,需要编写xxx_tb.v才能仿真 一.quartus2安装见这篇文章ht ...

  7. springmvc上传方法

    /** * * @param file 上传的文件 * @param filePath 上传到那个目录 * @return 上传后的文件名字 * @throws IOException */ publ ...

  8. UFLDL深度学习笔记 (五)自编码线性解码器

    UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论&q ...

  9. 谷歌宣称web组件才是web开发的未来

    谷歌宣称web组件才是web开发的未来 虽然今年的谷歌I/O大会没有出现像去年谷歌眼镜发布时直播疯狂跳伞这样的活动,但是上周仍然有不少产品推出.谷歌宣布对谷歌地图.搜索.安卓,以及其他 很多产品做出更 ...

  10. 一定要搜藏的20个非常有用的PHP类库

    一定要搜藏的20个非常有用的PHP类库 本文提供了20个非常有用的PHP类库的名称和下载地址.这20个PHP类库包含了图标库,RSS解析,缩略图生成,支付,OpenID,数据库抽象,PDF生成器等一系 ...