Some of you may have played a game called 'Blocks'. There are n blocks in a row, each box has a color. Here is an example: Gold, Silver, Silver, Silver, Silver, Bronze, Bronze, Bronze, Gold.
The corresponding picture will be as shown below:



Figure 1

If some adjacent boxes are all of the same color, and both
the box to its left(if it exists) and its right(if it exists) are of
some other color, we call it a 'box segment'. There are 4 box segments.
That is: gold, silver, bronze, gold. There are 1, 4, 3, 1 box(es) in the
segments respectively.

Every time, you can click a box, then the whole segment
containing that box DISAPPEARS. If that segment is composed of k boxes,
you will get k*k points. for example, if you click on a silver box, the
silver segment disappears, you got 4*4=16 points.

Now let's look at the picture below:



Figure 2

The first one is OPTIMAL.

Find the highest score you can get, given an initial state of this game.

Input

The first line contains the number of tests t(1<=t<=15).
Each case contains two lines. The first line contains an integer
n(1<=n<=200), the number of boxes. The second line contains n
integers, representing the colors of each box. The integers are in the
range 1~n.

Output

For each test case, print the case number and the highest possible score.

Sample Input

2
9
1 2 2 2 2 3 3 3 1
1
1

Sample Output

Case 1: 29
Case 2: 1 对于贪心显然就不正确了;
那么考虑dp;
设dp[ i ][ j ][ k ]表示i~j区间,最后合并k个的最大值;
dp[ i ][ j ][ k ]=dp[ i ][ j-1 ][ 0 ]+( len[ j ]+k )^2;
第二种情况就是中间一段先消去,然后与后面那一段拼接消除;
dp[ i ][ j ][ k ]=dp[ i ][ k ][ len[ j ]+k ]+dp[ k+1 ][ j-1 ][ 0 ];
那么我们记忆化dfs即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 400005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll mode;
struct matrix {
ll n, m, a[10][10];
matrix(ll n, ll m) {
this->n = n; this->m = m; ms(a);
}
matrix(ll n, ll m, char c) {
this->n = n; this->m = m; ms(a);
for (int i = 1; i <= n; i++)a[i][i] = 1;
}
ll *operator [](const ll x) {
return a[x];
}
matrix operator *(matrix b) {
matrix c(n, b.m);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= b.m; j++) {
for (int k = 1; k <= m; k++) {
c[i][j] = (c[i][j] + a[i][k] % mode*b[k][j] % mode) % mode;
}
}
}
return c;
}
void operator *=(matrix &b) {
*this = *this *b;
}
matrix operator ^(ll b) {
matrix ans(n, m, 'e'), a = *this;
while (b) {
if (b % 2)ans = ans * a; a *= a; b >>= 1;
}
return ans;
}
}; int dp[202][202][202];
int T;
int n;
int col[210];
int len[202];
int fg;
int dfs(int x, int y, int k) {
if (dp[x][y][k])return dp[x][y][k];
if (x == y)return (len[x] + k)*(len[x] + k);
dp[x][y][k] = dfs(x, y - 1, 0) + (len[y] + k)*(len[y] + k);
for (int i = x; i < y; i++) {
if (col[i] == col[y]) {
dp[x][y][k] = max(dp[x][y][k], dfs(x, i, len[y] + k) + dfs(i + 1, y - 1, 0));
}
}
return dp[x][y][k];
} int main()
{
//ios::sync_with_stdio(0);
rdint(T); int cnt = 0;
while (T--) {
cnt++;
ms(dp); ms(col); ms(len);
fg = 0;
int ans = 0;
rdint(n);
for (int i = 1; i <= n; i++) {
int tmp; rdint(tmp);
if (col[fg] == tmp)len[fg]++;
else fg++, len[fg] = 1, col[fg] = tmp;
}
ans = dfs(1, fg, 0);
cout << "Case " << cnt << ": " << ans << endl;
}
return 0;
}

Blocks poj 区间dp的更多相关文章

  1. Blocks题解(区间dp)

    Blocks题解 区间dp 阅读体验...https://zybuluo.com/Junlier/note/1289712 很好的一道区间dp的题目(别问我怎么想到的) dp状态 其实这个题最难的地方 ...

  2. 【Uva10559】Blocks(区间DP)

    Description 题意:有一排数量为N的方块,每次可以把连续的相同颜色的区间消除,得到分数为区间长度的平方,然后左右两边连在一起,问最大分数为多少. \(1\leq N\leq200\) Sol ...

  3. UVA10559 方块消除 Blocks(区间dp)

    一道区间dp好题,在GZY的ppt里,同时在洛谷题解里看见了Itst orz. 题目大意 有n个带有颜色的方块,没消除一段长度为 \(x\) 的连续的相同颜色的方块可以得到 \(x^2\) 的分数,用 ...

  4. POJ 1390 Blocks(区间DP)

    Blocks [题目链接]Blocks [题目类型]区间DP &题意: 给定n个不同颜色的盒子,连续的相同颜色的k个盒子可以拿走,权值为k*k,求把所有盒子拿完的最大权值 &题解: 这 ...

  5. POJ 1390 Blocks (区间DP) 题解

    题意 t组数据,每组数据有n个方块,给出它们的颜色,每次消去的得分为相同颜色块个数的平方(要求连续),求最大得分. 首先看到这题我们发现我们要把大块尽可能放在一起才会有最大收益,我们要将相同颜色块合在 ...

  6. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  7. POJ1390 Blocks (区间DP)

    题目链接:POJ 1390.Blocks 题意: 有n个方块排成一列,每个方块有颜色即1到n的一个值,每次操作可以把一段相同颜色的方块拿走,长度为k,则获得的分数为 \(k\times k\),求可获 ...

  8. UVA10559&POJ1390 Blocks 区间DP

    题目传送门:http://poj.org/problem?id=1390 题意:给出一个长为$N$的串,可以每次消除颜色相同的一段并获得其长度平方的分数,求最大分数.数据组数$\leq 15$,$N ...

  9. POJ 1179 - Polygon - [区间DP]

    题目链接:http://poj.org/problem?id=1179 Time Limit: 1000MS Memory Limit: 10000K Description Polygon is a ...

随机推荐

  1. xcode修改横屏

    1.修改工程属性 2.修改info.plist文件

  2. 11-23网页基础--JavaScript基础知识

    第一课 JavaScript简介 一.定义:JavaScript是脚本语言,需要宿主文件,它的宿主文件是html文件. JavaScript 是一种轻量级的编程语言. JavaScript 是可插入 ...

  3. css水平垂直居中方法(一)

    第五种方法: 首先设置一个div,设置其的width与height,为了方便观察,我定义了div的背景色为red,代码如下: <!doctype html> <html lang=& ...

  4. 用于确保页面中js加载完全,对于优化某网页的加载速度,有什么见解

    js方法: <script type="text/javascript"> window.onload = function(){ var userName = &qu ...

  5. Proxy模式 代理模式

    Android的 LocalWindowManager 和 WindowManagerImgl 都实现了WindowManager接口.LocalWindowManager 中保存一个WindowMa ...

  6. springmvc 路径问题

    web项目中的相对路径可以分为二类: 1.以斜杠开头:以斜杠开头的又分为二类(分类依据是斜杠出现的位置):如果出现在java代码或者配置文件(xml,properties等),这个路径叫做后台路径. ...

  7. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-007归并排序(自下而上)

    一. 1. 2. 3. 二.代码 package algorithms.mergesort22; import algorithms.util.StdIn; import algorithms.uti ...

  8. vue 之 let 和const

    浏览目录 let const let es6新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效. 上面代码在代码块之中,分别用let和var声明了 ...

  9. 存储过程自动更新ID

    DECLARE @i int --更新题序编号 UPDATE UserAnswer SET @i=@i+,TestOrder=@i WHERE UserScoreID=' //根据ID 累加更新

  10. adobe flash player 过期问题

    在百度搜索 " adobe flash player debugger",如图打开官网 https://www.adobe.com/support/flashplayer/debu ...