DiscreteFrechetDist
计算离散的frechet 距离,通过计算两条曲线之间的点的距离,将两条曲线上的点按照距离以及曲线的趋势进行配对,最后根据这些配对的距离选出最后的离散frechet距离
(compute discrete frechet distance between two curves )
地图匹配算法实践:https://blog.csdn.net/happyduoduo1/article/details/51773613
路径相似性描述:https://zhuanlan.zhihu.com/p/20159963
function [cm, cSq] = DiscreteFrechetDist(P,Q,dfcn)
% Calculates the discrete Frechet distance between curves P and Q
%
% [cm, cSq] = DiscreteFrechetDist(P,Q)
% [cm, cSq] = DiscreteFrechetDist(...,dfcn)
%
% P and Q are two sets of points that define polygonal curves with rows of
% vertices (data points) and columns of dimensionality. The points along
% the curves are taken to be in the order as they appear in P and Q.
%
% Returned in cm is the discrete Frechet distance, aka the coupling
% measure, which is zero when P equals Q and grows positively as the curves
% become more dissimilar.
%
% The optional dfcn argument allows the user to specify a function with
% which to calculate distance between points in P and Q. If not provided,
% the L2 norm is used.
%
% The secondary output, cSq, is the coupling sequence, that is, the
% sequence of steps along each curve that must be followed to achieve the
% minimum coupling distance, cm. The output is returned in the form of a
% matrix with column 1 being the index of each point in P and column 2
% being the index of each point in Q. (NOTE: the coupling sequence is not
% unique in general)
%
% Explanation:
% The Frechet distance is a measure of similarity between to curves, P and
% Q. It is defined as the minimum cord-length sufficient to join a point
% traveling forward along P and one traveling forward along Q, although the
% rate of travel for either point may not necessarily be uniform.
%
% The Frechet distance, FD, is not in general computable for any given
% continuous P and Q. However, the discrete Frechet Distance, also called
% the coupling measure, cm, is a metric that acts on the endpoints of
% curves represented as polygonal chains. The magnitude of the coupling
% measure is bounded by FD plus the length of the longest segment in either
% P or Q, and approaches FD in the limit of sampling P and Q.
%
% This function implements the algorithm to calculate discrete Frechet
% distance outlined in:
% T. Eiter and H. Mannila. Computing discrete Frechet distance. Technical
% Report 94/64, Christian Doppler Laboratory, Vienna University of
% Technology, 1994.
%
%
%
% EXAMPLE:
% % create data
% t = 0:pi/8:2*pi;
% y = linspace(1,3,6);
% P = [(2:7)' y']+0.3.*randn(6,2);
% Q = [t' sin(t')]+2+0.3.*randn(length(t),2);
% [cm, cSq] = DiscreteFrechetDist(P,Q);
% % plot result
% figure
% plot(Q(:,1),Q(:,2),'o-r','linewidth',3,'markerfacecolor','r')
% hold on
% plot(P(:,1),P(:,2),'o-b','linewidth',3,'markerfacecolor','b')
% title(['Discrete Frechet Distance of curves P and Q: ' num2str(cm)])
% legend('Q','P','location','best')
% line([2 cm+2],[0.5 0.5],'color','m','linewidth',2)
% text(2,0.4,'dFD length')
% for i=1:length(cSq)
% line([P(cSq(i,1),1) Q(cSq(i,2),1)],...
% [P(cSq(i,1),2) Q(cSq(i,2),2)],...
% 'color',[0 0 0]+(i/length(cSq)/1.35));
% end
% axis equal
% % display the coupling sequence along with each distance between points
% disp([cSq sqrt(sum((P(cSq(:,1),:) - Q(cSq(:,2),:)).^2,2))])
%
%
%
% %%% ZCD June 2011 %%%
% %%% edits ZCD May 2013: 1) remove excess arguments to internal functions
% and persistence for speed, 2) added example, 3) allowed for user defined
% distance function, 4) added aditional output option for coupling sequence
%
% size of the data curves
sP = size(P);
sQ = size(Q);
% check validity of inputs
if sP(2)~=sQ(2)
error('Curves P and Q must be of the same dimension')
elseif sP(1)==0
cm = 0;
return;
end
% initialize CA to a matrix of -1s
CA = ones(sP(1),sQ(1)).*-1;
% distance function
if nargin==2
dfcn = @(u,v) sqrt(sum( (u-v).^2 ));
end
% final coupling measure value
cm = c(sP(1),sQ(1));
% obtain coupling measure via backtracking procedure
if nargout==2
cSq = zeros(sQ(1)+sP(1)+1,2); % coupling sequence
CApad = [ones(1,sQ(1)+1)*inf; [ones(sP(1),1)*inf CA]]; % pad CA
Pi=sP(1)+1; Qi=sQ(1)+1; count=1; % counting variables
while Pi~=2 || Qi~=2
% step down CA gradient
[v,ix] = min([CApad(Pi-1,Qi) CApad(Pi-1,Qi-1) CApad(Pi,Qi-1)]);
if ix==1
cSq(count,:) = [Pi-1 Qi];
Pi=Pi-1;
elseif ix==2
cSq(count,:) = [Pi-1 Qi-1];
Pi=Pi-1; Qi=Qi-1;
elseif ix==3
cSq(count,:) = [Pi Qi-1];
Qi=Qi-1;
end
count=count+1;
end
% format output: remove extra zeroes, reverse order, subtract off
% padding value, and add in the last point
cSq = [flipud(cSq(1:find(cSq(:,1)==0,1,'first')-1,:))-1; sP(1) sQ(1)];
end
% debug
% assignin('base','CAw',CA)
function CAij = c(i,j)
% coupling search function
if CA(i,j)>-1
% don't update CA in this case
CAij = CA(i,j);
elseif i==1 && j==1
CA(i,j) = dfcn(P(1,:),Q(1,:)); % update the CA permanent
CAij = CA(i,j); % set the current relevant value
elseif i>1 && j==1
CA(i,j) = max( c(i-1,1), dfcn(P(i,:),Q(1,:)) );
CAij = CA(i,j);
elseif i==1 && j>1
CA(i,j) = max( c(1,j-1), dfcn(P(1,:),Q(j,:)) );
CAij = CA(i,j);
elseif i>1 && j>1
CA(i,j) = max( min([c(i-1,j), c(i-1,j-1), c(i,j-1)]),...
dfcn(P(i,:),Q(j,:)) );
CAij = CA(i,j);
else
CA(i,j) = inf;
end
end % end function, c
end % end main function
DiscreteFrechetDist的更多相关文章
随机推荐
- Gym - 101635K:Blowing Candles (简单旋转卡壳,求凸包宽度)
题意:给定N个点,用矩形将所有点覆盖,要求矩形宽度最小. 思路:裸体,旋转卡壳去rotate即可. 最远距离是点到点:宽度是点到边. #include<bits/stdc++.h> #de ...
- mybatis与oracle使用总结
Oracle使用总结 1.新建表删除表 新建表语句: CREATE TABLE +表名{ } create table AFA_USER ( USER_ID VARCHAR2() not null, ...
- vue.js初学(三)模板语法
1:介绍 vue.js允许开发者声明式地将Dom元素绑定至Vue实例的底层,所有的模板都是合法的html,所以能够被遵循规范的浏览器和html解析器解析 在底层的实现上,vue将模板编译成虚拟Dom渲 ...
- navicate笔记
使用sql语句,在查询中写入sql语句,点击运行即可. 想让表清空,自增id从1开始,右键表选择删减表即可
- Hot resize Multipath Disk – Linux
This post is for the users of the great dm-multipath system in Linux, who encounter a major availabi ...
- 某个应用使cpu使用率100%
--CPU使用率 Linux是一个多任务的操作系统,将每个cpu的时间划分为很短的时间片,再通过调度器轮流分配给各个任务使用,因此造成多任务同时运行的错觉 为了维护cpu时间,linux通过事先定义的 ...
- 【转】href="#"与"javascript:void(0);"的区别
在工作中,如果我们想把a标签中的链接置成空链接,我们一般会用两种方法: 1 <a href="#" target="_blank"></a&g ...
- Java事务的原理与应用
Java事务的原理与应用 一.什么是Java事务 事务必须服从ISO/IEC所制定的ACID原则.ACID是原子性(atomicity).一致性(consistency).隔离性 (isolation ...
- 10-17C#第四部分--类型(1)
C#类型--String类 一.String类型 () 注:string与String的不同:string属于String的数据类型,小写string是大写String类型的实例化:string属于S ...
- 部署和调优 3.3 dns安装配置-3
只有一台DNS服务器是不保险的,现在给他配置个从服务器. 在另外一台虚拟机上安装配置DNS服务器.先查看虚拟机ip为:192.168.1.111 ifconfig 给从安装bind和dig命令 yum ...